Abstract
Newly, the hybrid fractional differential operator (HFDO) is presented and studied in Baleanu et al. (Mathematics 8.3:360, 2020). This work deals with the extension of HFDO to the complex domain and its generalization by using the quantum calculus. The outcome of the above conclusion is a q-HFDO, which will employ to introduce some classes of normalized analytic functions containing the well-known starlike and convex classes. Moreover, we utilize the quantum calculus to formulate the q-integral operator corresponding to q-HFDO. As a result, the upper solution is exemplified by utilizing the notion of subordination inequality.
Similar content being viewed by others
References
Kac, V., Cheung, P.: Quantum Calculus. Springer Science & Business Media; (2001)
Johnson, W.P.: An Introduction to q-analysis, American Mathematical Society, (2020), Print ISBN: 978-1-4704-5623-8
Jackson, F.H.: On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinburgh 46(2), 253–281 (1909)
Jackson, F.H.: On q-definite integrals. Quart. J. Pure Appl. Math. 41, 193–203 (1910)
Aouf, M.K., Seoudy, T.M.: “Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative operator.” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 113.2 (2019): 1279–1288
Arif, Muhammad, Srivastava, H.M., Umar, Sadaf: “Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions.” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 113.2 (2019): 1211–1221
Anderson, Douglas R., Onitsuka, Masakazu: Hyers-Ulam Stability for Quantum Equations of Euler Type. Discrete Dyn. Nat. Soc. 2020, (2020)
Usman, M., Ibrahim, M.S., Ahmed, J., Hussain, S.S., Moinuddin, M.: Quantum calculus-based volterra LMS for nonlinear channel estimation. In 2019 Second International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT) (pp. 1-4). IEEE (2019, November)
Srivastava, H.M., Bansal, D.E.: Close-to-convexity of a certain family of q-Mittag–Leffler functions. J. Nonlinear Var. Anal 1(1), 61–69 (2017)
Srivastava, Hari M., Ahmad, Qazi Zahoor, Khan, Nasir, Khan, Nazar, Khan, Bilal: Hankel and toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 7, no. 2 (2019): 181
Mahmood, Shahid, Srivastava, Hari M., Khan, Nazar, Ahmad, Qazi Zahoor, Khan, Bilal, Ali: Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 11, no. 3 (2019): 347
Shi, Lei, Khan, Qaiser, Srivastava, Gautam, Liu, Jin-Lin, Arif, Muhammad: A study of multivalent q-starlike functions connected with circular domain. Mathematics 7(8), 670 (2019)
Ibrahim, Rabha W., Darus, Maslina: On a class of analytic functions associated to a complex domain concerning q-differential-difference operator. Adv. Differ. Equ. 2019(1), 515 (2019)
Srivastava, H.M.: Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran J. Sci. Technol. Trans. A Sci. (2020): 1-18
Ul-Haq, Miraj, Raza, Mohsan, Arif, Muhammad, Khan, Qaiser, Tang, Huo: q-analogue of differential subordinations. Mathematics 7(8), 724 (2019)
Ibrahim, R. W., Hadid, S. B., Momani, S.: Generalized Briot–Bouquet differential equation by a quantum difference operator in a complex domain. Int. J. Dyn. Control 1–10 (2020)
Ibrahim, R.W., Elobaid, R.M., Obaiys, S.J.: A class of quantum Briot–Bouquet differential equations with complex coefficients. Mathematics 8(5), 794 (2020)
Ibrahim, R.W., Elobaid, R.M., Obaiys, S.J.: On sub-classes of analytic functions based on a quantum symmetric conformable differential operator with the application. Adv. Differ. Equ. 2020, 1–14 (2020)
Baleanu, D., Fernandez, A., Akgul, A.: On a fractional operator combining proportional and classical differintegrals. Mathematics 8.3 (2020): 360
Anderson, D.R., Ulness, D.J.: Newly defined conformable derivatives. Adv. Dyn. Syst. Appl 10(2), 109–137 (2015)
Duren, P.: Univalent Functions, Grundlehren der mathematischen Wissenschaften; 259 Springer-Verlag New York Inc. 1983. ISBN 0-387-90795-5. MR0708494
Srivastava, H.M., Owa, S.: Univalent Functions, Fractional calculus, and their applications, Halsted Press, John Wiley and Sons, New York. Brisbane, and Toronto, Chichester (1989)
Ibrahim, R. W., Jahangiri, Jay M.: Cloud computing center. “Conformable differential operator generalizes the Briot-Bouquet differential equation in a complex domain.” AIMS Math 4, 6: 1582-1595 (2019)
Miller, S.S., Mocanu, P.T.: Differential subordinations: theory and applications. CRC Press, Boca Raton (2000)
Ma W.C., Minda D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis, Tianjin, China, (1992): 19-23
Khatter, K., Ravichandran, V., Sivaprasad Kumar, S.: Starlike functions associated with exponential function and the lemniscate of Bernoulli. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 113, 1 (2019): 233–253
Kumar, V., Nak Eun C., Ravichandran, V., Srivastava, H. M.: Sharp coefficient bounds for starlike functions associated with the Bell numbers. Mathematica Slovaca 69, 5 (2019): 1053–1064
Singh, R., Singh, S.: Some sufficient conditions for univalence and starlikeness. In Colloq. Math. 2(47), 309–314 (1982)
Ruscheweyh, S.: Convolutions in geometric function theory. Presses University, Montreal (1982)
Jack, I.S.: Functions starlike and convex of order \(\alpha \). J. Lond. Math. Soc. 3, 469–474 (1971)
Saitoh, H.: Properties of certain analytic functions. Proc. Jpn. Acad. Ser. A Math. Sci. 65(5), 131–134 (1989)
Acknowledgements
The authors would like to thank both anonymous reviewers and the editor for their helpful advice and comments.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflicts of Interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ibrahim, R.W., Baleanu, D. On quantum hybrid fractional conformable differential and integral operators in a complex domain. RACSAM 115, 31 (2021). https://doi.org/10.1007/s13398-020-00982-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13398-020-00982-5
Keywords
- Conformable calculus
- Differential operator
- Univalent function
- Analytic function
- Subordination and superordination
- Unit disk
- Fractional calculus
- Quantum calculus