Skip to main content

Sobolev spaces of vector-valued functions


We are concerned here with Sobolev-type spaces of vector-valued functions. For an open subset \(\Omega \subset {\mathbb {R}}^N\) and a Banach space V, we compare the classical Sobolev space \(W^{1,p}(\Omega , V)\) with the so-called Sobolev–Reshetnyak space \(R^{1,p}(\Omega , V)\). We see that, in general, \(W^{1,p}(\Omega , V)\) is a closed subspace of \(R^{1,p}(\Omega , V)\). As a main result, we obtain that \(W^{1,p}(\Omega , V)=R^{1,p}(\Omega , V)\) if, and only if, the Banach space V has the Radon–Nikodým property

This is a preview of subscription content, access via your institution.


  1. 1.

    Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, 2nd edn. Monographs in Mathematics, 96. Birkhäuser/Springer Basel AG, Basel (2011)

  2. 2.

    Arendt, W., Kreuter, M.: Mapping theorems for Sobolev spaces of vector-valued functions. Stud. Math. 240, 275–299 (2018)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. Vol. 1. American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI (2000)

  4. 4.

    Diestel, J., Uhl, J.: Vector measures. With a foreword by B. J. Pettis. Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I. (1977)

  5. 5.

    Hajłasz, P.: Sobolev spaces on metric-measure spaces. Contemp. Math. 338, 173–218 (2003)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Hajłasz, P., Tyson, J.T.: Sobolev peano cubes. Mich. Math. J. 56, 687–702 (2008)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85, 87–139 (2001)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev spaces on metric measure spaces. An approach based on upper gradients. New Mathematical Monographs, 27. Cambridge University Press, Cambridge (2015)

  9. 9.

    Kreuter, M.: Sobolev spaces of vector-valued functions. Master Thesis, Ulm University (2015)

  10. 10.

    Reshetnyak, YuG: Sobolev classes of functions with values in a metric space. Sib. Math. J. 38, 567–583 (1997)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16, 243–279 (2000)

    MathSciNet  Article  Google Scholar 

Download references


We would like to thank the referee for his/her interesting comments and suggestions, which helped to improve the quality of the paper.

Author information



Corresponding author

Correspondence to Jesús Á. Jaramillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported in part by Grant PGC2018-097286-B-I00 (Spain).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caamaño, I., Jaramillo, J.Á., Prieto, Á. et al. Sobolev spaces of vector-valued functions. RACSAM 115, 19 (2021).

Download citation


  • Sobolev spaces
  • Vector-valued functions

Mathematics Subject Classification

  • 46E35
  • 46E40
  • 46B22