Skip to main content

Stability of Lipschitz-type functions under pointwise product and reciprocation


This article provides necessary and sufficient conditions on the structure of a metric space such that for various vector lattices of real-valued Lipschitz-type functions defined on the metric space, the vector lattice is stable under pointwise product, and such that the reciprocal of each non-vanishing member of the vector lattice remains in the vector lattice. In each case the family of metric spaces for which the first property holds contains the family of metric spaces for which the second property holds. At the end we prove some extension theorems for classes of locally Lipschitz functions that complement known results for Cauchy continuous functions and for uniformly continuous functions.

This is a preview of subscription content, access via your institution.


  1. 1.

    Atsuji, M.: Uniform continuity of continuous functions of metric spaces. Pacific J. Math. 8, 11–16 (1958)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers, Dordrecht, Holland (1993)

    Book  Google Scholar 

  3. 3.

    Beer, G.: Between compactness and completeness. Top. Appl. 155, 503–514 (2008)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Beer, G.: McShane’s extension theorem revisited, to appear, Vietnam J. Math (2019)

  5. 5.

    Beer, G., Garrido, M.I.: Bornologies and locally Lipschitz functions. Bull. Aust. Math. Soc. 90, 257–263 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Beer, G., Garrido, M.I.: Locally Lipschitz functions, cofinal completeness, and UC spaces. J. Math. Anal. Appl. 428, 804–816 (2015)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Beer, G., Garrido, M.I.: On the uniform approximation of Cauchy continuous functions. Top. Appl. 208, 1–9 (2016)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Beer, G., Garrido, M.I.: Real-valued Lipschitz functions and metric properties of functions, to appear. J. Math. Anal. Appl. 486 (2020)

  9. 9.

    Beer, G., Garrido, M.I., Meroño, A.S.: Uniform continuity and a new bornology for a metric space. Set-Valued Var. Anal. 26, 49–65 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis, vol. 1. American Math. Soc, Providence (1998)

  11. 11.

    Borsik, J.: Mappings preserving Cauchy sequences. Časopis pěst. Mat. 113, 280–285 (1988)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Bouziad, A., Sukhacheva, E.: Preservation of uniform continuity under pointwise product. Top. Appl. 254, 132–144 (2019)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Cabello-Sánchez, J.: \(\fancyscript {U}(X)\) as a ring for metric spaces \(X\). Filomat 31, 1981–1984 (2017)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Cobzaş, Ş., Miculescu, R., Nicolae, A.: Lipschitz Functions. Springer, Cham (2019)

    Book  Google Scholar 

  15. 15.

    Czipszer, J., Gehér, L.: Extensions of functions satisfying a Lipschitz condition. Acta Math. Acad. Sci. Hung. 6, 213–220 (1955)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Garrido, M.I., Jaramillo, J.: Homomorphisms on function lattices. Monatsh. Math. 141, 127–146 (2004)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Garrido, M.I., Jaramillo, J.: Lipschitz-type functions on metric spaces. J. Math. Anal. Appl. 340, 282–290 (2008)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Garrido, M.I., Meroño, A.S.: New types of completeness in metric spaces. Ann. Acad. Sci. Fenn. Math. 39, 733–758 (2014)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Hejcman, J.: Boundedness in uniform spaces and topological groups. Czech Math. J. 9, 544–563 (1959)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Heinonen, J.: Lectures on analysis on metric spaces. Springer, New York (2001)

    Book  Google Scholar 

  21. 21.

    Hohti, A.: On uniform paracompactness. Ann. Acad. Sci. Fenn Series A Math. Diss. 36, 1–46 (1981)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Howes, N.: Modern Analysis and Topology. Springer, New York (1995)

    Book  Google Scholar 

  23. 23.

    Jain, T., Kundu, S.: Atsuji spaces: equivalent conditions. Top. Proc. 30, 301–325 (2006)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Leung, D., Tang, W.-K.: Functions that are Lipschitz in the small. Rev. Mat. Complut. 30, 25–34 (2017)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Luukkainen, J.: Rings of functions in Lipschitz topology. Ann. Acad. Sci. Fenn. Series A I Math. 4, 119–135 (1978–79)

  26. 26.

    Miculescu, R.: Approximation of continuous functions by Lipschitz functions. Real Anal. Exhange 26, 449–452 (2000–2001)

  27. 27.

    Monteiro, A.A., Peixoto, M.M.: Le nombre de Lebesgue et la continuité uniform. Portugaliae Math. 10, 105–113 (1951)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Rice, M.: A note on uniform paracompactness. Proc. Am. Math. Soc. 62, 359–362 (1977)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Roberts, A.W., Varberg, D.: Convex Functions. Academic Press, New York (1973)

    MATH  Google Scholar 

  30. 30.

    Scanlon, C.: Rings of functions with certain Lipschitz properties. Pacific J. Math. 32, 197–201 (1970)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Snipes, R.: Functions that preserve Cauchy sequences. Nieuw Archief Voor Wiskunde 25, 409–422 (1977)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Willard, S.: General Topology. Addison-Wesley, Reading (1970)

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gerald Beer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author would like to thank Universidad Complutense for its hospitality in September 2019. The second author is partially supported by grants MTM2017-83262-C2-2-P and Fundación Séneca CARM 20906/PI/18. He is also supported by a postdoctoral grant from Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia (Spain). The third author was partially supported by DGES grant PGC2018-097286-B-I00 (Spain).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beer, G., García-Lirola, L.C. & Garrido, M.I. Stability of Lipschitz-type functions under pointwise product and reciprocation. RACSAM 114, 120 (2020).

Download citation


  • Lipschitz function
  • Locally Lipschitz function
  • Lipschitz in the small function
  • Cauchy-Lipschitz function
  • Pointwise product
  • Reciprocation
  • UC-space
  • Cofinal completeness
  • Modulus of continuity

Mathematics Subject Classification

  • Primary 54E40
  • 26A16
  • Secondary 46E15
  • 54C30