Skip to main content

Hermite-Hadamard’s mid-point type inequalities for generalized fractional integrals

Abstract

Some Hermite-Hadamard’s mid-point type inequalities related to Katugampola fractional integrals are obtained where the first derivative of considered mappings is Lipschitzian or convex. Also some mid-point type inequalities are given for Lipschitzian mappings, with the aim of generalizing the results presented in previous works. Finally, some generalized inequalities in connection with special means are provided.

This is a preview of subscription content, access via your institution.

References

  1. Chen, F.: Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 268, 121–128 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Chen, H., Katugampola, U.N.: Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446, 1274–1291 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11, 91–95 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Dragomir, S.S., Cho, Y.J., Kim, S.S.: Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 245, 489–501 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Dragomir, S.S., Pearce, C.E.M.: Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. (ONLINE: http://ajmaa.org/RGMIA/monographs.php/). Accessed 1 Jan 2016

  6. Gorenflo, R., Mainardi, F.: Fractional calculus, integral and differential equations of fractional order, pp. 223–276. Springer, Wien (1997)

    Google Scholar 

  7. Hadamard, J.: Étude sur les propriètés des fonctions entiéres et en particulier d’une fontion considérée par Riemann. J. Math. Pures. Appl. 58, 171–215 (1893)

    MATH  Google Scholar 

  8. Hermite, C.: Sur deux limites d’une intégrale définie. Mathesis 3, 82–83 (1883)

    Google Scholar 

  9. Iqbal, M., Iqbal Bhatti, M., Nazeer, K.: Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals. Bull. Korean Math. Soc. 52(3), 707–716 (2015)

    MathSciNet  MATH  Google Scholar 

  10. İşcan, İ., Wu, S.: Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 238, 237–244 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Jleli, M., O’Regan, D., Samet, B.: On Hermite-Hadamard Type Inequalities via Generalized Fractional Integrals. Turk. J. Math. 40, 1221–1230 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218(3), 860–865 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Katugampola, U.N.: New approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  15. Kirmaci, U.S.: Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 147(1), 137–146 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Kiryakova, V.: Generalized Fractional Calculus and Applications. Wiley, New York (1994)

    MATH  Google Scholar 

  17. Mitrinović, D.S., Lacković, I.B.: Hermite and convexity. Aequ. Math. 28, 229–232 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Noor, M.A., Noor, K.I., Awan, M.U., Khan, S.: Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions. Appl. Math. Inf. Sci. 8(6), 2865–2872 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Robert, A.W., Varbeg, D.E.: Convex Functions. Academic Press, New York (1973)

    Google Scholar 

  20. Rostamian Delavar, M., De La Sen, M.: Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals. J. Math. 2018, 10 (2018). (Article ID 5864091)

    MATH  Google Scholar 

  21. Rostamian Delavar, M., Dragomir, S.S.: Weighted trapezoidal inequalities related to the area balance of a function with applications. Appl. Math. Comput. 340, 5–14 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Rostamian Delavar, M., Dragomir, S.S.: Trapezoidal type inequalities related to h-convex functions with applications. RACSAM. 113(2), 1487–1498 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam (1993)

    MATH  Google Scholar 

  24. Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)

    MATH  Google Scholar 

  25. Set, E., İşcan, İ., Sarikaya, M.Z., Özdemir, M.E.: On new inequalities of Hermite-Hadamard-Fejér type for convex functions via fractional integrals. Appl. Math. Comput. 259, 875–881 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Wang, J., Fečkan, M.: Fractional Hermite-Hadamard Inequalities. De Gruyter, Germany (2018)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewer for his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rostamian Delavar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delavar, M.R., Dragomir, S.S. Hermite-Hadamard’s mid-point type inequalities for generalized fractional integrals. RACSAM 114, 73 (2020). https://doi.org/10.1007/s13398-020-00795-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00795-6

Keywords

Mathematics Subject Classification