Abstract
Some Hermite-Hadamard’s mid-point type inequalities related to Katugampola fractional integrals are obtained where the first derivative of considered mappings is Lipschitzian or convex. Also some mid-point type inequalities are given for Lipschitzian mappings, with the aim of generalizing the results presented in previous works. Finally, some generalized inequalities in connection with special means are provided.
This is a preview of subscription content, access via your institution.
References
Chen, F.: Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 268, 121–128 (2015)
Chen, H., Katugampola, U.N.: Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446, 1274–1291 (2017)
Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11, 91–95 (1998)
Dragomir, S.S., Cho, Y.J., Kim, S.S.: Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 245, 489–501 (2000)
Dragomir, S.S., Pearce, C.E.M.: Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. (ONLINE: http://ajmaa.org/RGMIA/monographs.php/). Accessed 1 Jan 2016
Gorenflo, R., Mainardi, F.: Fractional calculus, integral and differential equations of fractional order, pp. 223–276. Springer, Wien (1997)
Hadamard, J.: Étude sur les propriètés des fonctions entiéres et en particulier d’une fontion considérée par Riemann. J. Math. Pures. Appl. 58, 171–215 (1893)
Hermite, C.: Sur deux limites d’une intégrale définie. Mathesis 3, 82–83 (1883)
Iqbal, M., Iqbal Bhatti, M., Nazeer, K.: Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals. Bull. Korean Math. Soc. 52(3), 707–716 (2015)
İşcan, İ., Wu, S.: Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 238, 237–244 (2014)
Jleli, M., O’Regan, D., Samet, B.: On Hermite-Hadamard Type Inequalities via Generalized Fractional Integrals. Turk. J. Math. 40, 1221–1230 (2016)
Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218(3), 860–865 (2011)
Katugampola, U.N.: New approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Kirmaci, U.S.: Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 147(1), 137–146 (2004)
Kiryakova, V.: Generalized Fractional Calculus and Applications. Wiley, New York (1994)
Mitrinović, D.S., Lacković, I.B.: Hermite and convexity. Aequ. Math. 28, 229–232 (1985)
Noor, M.A., Noor, K.I., Awan, M.U., Khan, S.: Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions. Appl. Math. Inf. Sci. 8(6), 2865–2872 (2014)
Robert, A.W., Varbeg, D.E.: Convex Functions. Academic Press, New York (1973)
Rostamian Delavar, M., De La Sen, M.: Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals. J. Math. 2018, 10 (2018). (Article ID 5864091)
Rostamian Delavar, M., Dragomir, S.S.: Weighted trapezoidal inequalities related to the area balance of a function with applications. Appl. Math. Comput. 340, 5–14 (2019)
Rostamian Delavar, M., Dragomir, S.S.: Trapezoidal type inequalities related to h-convex functions with applications. RACSAM. 113(2), 1487–1498 (2019)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam (1993)
Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)
Set, E., İşcan, İ., Sarikaya, M.Z., Özdemir, M.E.: On new inequalities of Hermite-Hadamard-Fejér type for convex functions via fractional integrals. Appl. Math. Comput. 259, 875–881 (2015)
Wang, J., Fečkan, M.: Fractional Hermite-Hadamard Inequalities. De Gruyter, Germany (2018)
Acknowledgements
The authors would like to thank the reviewer for his/her valuable comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Delavar, M.R., Dragomir, S.S. Hermite-Hadamard’s mid-point type inequalities for generalized fractional integrals. RACSAM 114, 73 (2020). https://doi.org/10.1007/s13398-020-00795-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13398-020-00795-6
Keywords
- Fractional integrals
- Hermite-Hadamard inequality
- Mid-point type inequalities
- Lipschitzian mappings
- Convex mappings
- Special means