Skip to main content
Log in

A numerical scheme based on non-discretization of data for boundary value problems of fractional order differential equations

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In this article, we develop a powerful method for the numerical solution of boundary value problems (BVPs) of fractional order differential equations (FDEs). Omitting the discretization of data by using Bernstein polynomials, we construct the required scheme. With the help of this scheme we convert the concerned FDEs to algebraic equations whose solutions led us to the numerical solution of the considered problem. Numerical examples are provided to illustrate our main results. Also comparison of the results with the exact solutions and other method like (Haar wavelets) is provided to justify the efficiency of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arikoglu, A., Ozkol, I.: Solution of fractional differential equations by using differential transform method. Chaos Solitons Fractals. 34, 1473–1481 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arikoglu, A., Ozkol, I.: Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Solitons Fractals. 40, 521–529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Z., Dong, X., Yin, C.: Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions. Bound. Value Probl. 2016(63), 11 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bai, Z., Zhang, S., Sun, S., Yin, C.: Monotone iterative method for fractional differential equations. Electron. J. Diff. Equ. 2016(6), 1–8 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Benchohra, M., Graef, J.R., Hamani, S.: Existence results for boundary value problems with nonlinear fractional differential equations. J. Appl. Anal. 87, 851–863 (2008)

    Article  MATH  Google Scholar 

  6. Bhattia, M.I., Bracken, P.: Solutions of differential equations in a Bernstein polynomial basis. J. Comput. Appl. Math. 205, 272–280 (2007)

    Article  MathSciNet  Google Scholar 

  7. Blank, L.: Numerical treatment of differential equations of fractional order, Numerical Analysis Report 287, Manchester Centre for Computational Mathematics (1996)

  8. Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econom. 73, 5–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Darania, P., Ebadian, A.: A method for the numerical solution of the integro-differential equations. Appl. Math. Comput. 188, 657–668 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Diethelm, K., Walz, G.: Numerical solution of fractional order differential equations by extropolation. Numer. Algorithms. 16, 231–253 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, S.: Analytical solution of a fractional diffusion equation by variational iteration method. Comput. Math. Appl. 57, 483–487 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. El-Wakil, S.A., Elhanbaly, A., Abdou, M.A.: Adomian decomposition method for solving fractional nonlinear differential equations. Appl. Math. Comput. 182, 313–324 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Erturk, V.S., Momani, S.: Solving systems of fractional differential equations using differential transform method. J. Comput. Appl. Math. 215, 142–151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erturk, V.S., Momani, S., Odibat, Z.: Application of generalized differential transform method to multi-order fractional differential equations. Comm. Nonlinear Sci. Numer. Simul. 13, 1642–1654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  16. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  17. He, J.H.: Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 15, 86–90 (1999)

    Google Scholar 

  18. Gzyl, H., Palacios, J.L.: On the approximation properties of Bernstein polynomials via probabilistic tools. Bol. Asoc. Mat. Venez. 10, 5–13 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Gmez-Aguilar, J.F., Rosales-Garca, J.J., Gua-Caldern, M.: RLC electrical circuit of non-integer order. Cent. Eur. J. Phys. 11(10), 1361–5 (2013)

    Google Scholar 

  20. Hashim, I., Abdulaziz, O., Momani, S.: Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 14, 674–684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. Interfacial Electrochem. 33, 253–265 (1971)

    Article  Google Scholar 

  22. Inca, M., Kiliç, B.: Classification of traveling wave solutions for time-fractional fifth-order KdV-like equation. Waves Random Complex Media 2014, 393–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245–256 (2012)

    Article  MATH  Google Scholar 

  24. Kilbas, A.A., Marichev, O.I., Samko, S.G.: Fractional Integrals and Derivatives (Theory and Applications). Gordon and Breach, Basel (1993)

    MATH  Google Scholar 

  25. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland athematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  26. Khalil, H., Shah, K., Khan, R.A.: Approximate solution of boundary value problems using shifted Legendre polynomials. Appl. Comput. Math. 16, 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Lakshmikantham, V., Leela, S., Vasundhara, J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)

    MATH  Google Scholar 

  28. Liua, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 146, 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Y., Shah, K.: Numerical solutions of coupled systems of fractional order partial differential equations. Adv. Math. Phys. 2017, 14 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  31. Magin, R.L.: Fractional calculus in bioengineering-part 2. J. Crit. Rev. Biomed. Eng. 32, 105–193 (2004)

    Article  Google Scholar 

  32. Magin, R.L.: Fractional calculus in bioengineering. J. Crit. Rev. Biomed. Eng. 32, 1–104 (2004)

    Article  Google Scholar 

  33. Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11(11), 1335–1342 (2008)

    Article  Google Scholar 

  34. Mandal, B.N., Bhattacharya, S.: Numerical solution of some classes of integral equations using Bernstein polynomials. Appl. Math. Comput. 190, 1707–1716 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Momani, S., Odibat, Z.: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207, 96–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mahsud, Y., Shah, N.A., Vieru, D.: Influence of time-fractional derivatives on the boundary layer flow of Maxwell fluids. Chin. J. Phys. 55, 1340–1351 (2017)

    Article  Google Scholar 

  38. Moshrefi-Torbati, M., Hammond, J.K.: Physical and geometrical interpretation of fractional operators. J. Frankl. Inst. 335(6), 1077–1086 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nigmatullin, R.R.: Fractional integral and its physical interpretation. J. Theor. Math. Phys. 90(3), 242–251 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ordokhani, Y., Davaei, S.: Approximate solutions of differential equations by using the Bernstein polynomials. ISRN Appl. Math. 2011, 1–15 (2011). (Art. ID 787694)

    Article  MathSciNet  MATH  Google Scholar 

  41. Odibat, Z., Momani, S.: Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Model. 32, 28–39 (2008)

    Article  MATH  Google Scholar 

  42. Odibat, Z., Shawagfeh, N.: Generalized Taylor’s formula. Appl. Math. Comput. 186, 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, New York (1999)

    MATH  Google Scholar 

  44. Rehman, M., Khan, R.: A note on boundary value problems for a coupled system of fractional differential equations. Comput. Math. Appl. 61, 2630–2637 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. J. Appl. Mech. Rev. 50, 15–67 (1997)

    Article  Google Scholar 

  46. Rehman, M., Khan, R.A.: The legender wavelet method for solving fractional differential equation. Commun. Nonlinear Sci. Numer. Simul. 16, 4163–4173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rahman, M.: Boundary Value Problems for Fractional Differential Equations: Existence Theory and Numerical Solutions; PhD dissertation, Nust University, Pakistan (2011)

  48. Rosales Garcia, J.J., Calderon, M.G., Martinez Ortiz, J., Baleanu, D.: Motion of a particle in a resisting medium using fractional calculus approach. Proc. Roman. Acad. Series A. 14(1), 42–7 (2013)

    MathSciNet  Google Scholar 

  49. Rosales, J., Guia, M., Gomez, F., Aguilar, F., Martinez, J.: Two dimensional fractional projectile motion in a resisting medium. Cent. Eur. J. Phys. 12(7), 517–20 (2014)

    Google Scholar 

  50. Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Saadatmandi, A., Deghan, M.: A new operational matrix for solving fractional-order differential equation. Comput. Math. Appl. 59, 1326–1336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Shah, K., Khalil, H., Khan, R.A.: A generalized scheme based on shifted Jacobi polynomials for numerical simulation of coupled systems of multi-term fractional order partial differential equations. Lond. Math. Soc. J. Comput. Math. 20, 11–29 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Shah, K.: Multi Point Boundary Value Problems for Systems Of Fractional Differential Equations: Existence Theory and Numerical Simulations, Phd Disertation, University of Malakand, Pakistan (2016)

  54. Sweilam, N.H., Khader, M.M., Al-Bar, R.F.: Numerical studies for a multi-order fractional differential equation. Phys. Lett. A. 371, 26–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang, Y., Liu, L., Wu, Y.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74, 3599–3605 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yousefi, S.A., Behroozifar, M.: Operational matrices of Bernstein polynomials and their applications. Int. J. Syst. Sci. 41, 709–716 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang, X.J.: Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Thermal Sci. 21(3), 1161–1171 (2017)

    Article  Google Scholar 

  58. Yang, X.J., Machado, J.T.: A new fractional operator of variable order: application in the description of anomalous diffusion. Phys. A 481, 276–283 (2017)

    Article  MathSciNet  Google Scholar 

  59. Yang, X.J., Machado, J.T., Baleanu, D., Cattani, C.: On exact traveling-wave solutions for local fractional Korteweg-de Vries equation, Chaos: an interdisciplinary. J. Nonlinear Sci. 26(8), 084312–084320 (2016)

    MATH  Google Scholar 

  60. Shah, K., Wang, J., Khalil, H., Khan, R.A.: Existence and numerical solutions of a coupled system of integral BVP for fractional differential equations. Adv. Differ. Equ. 2018(149), 1–21 (2018)

    MathSciNet  MATH  Google Scholar 

  61. Peng, S., Wang, J., Yu, X.: Stable manifolds for some fractional differential equations. Nonlinear Anal. Model. Control 23, 642–663 (2018)

    Article  MathSciNet  Google Scholar 

  62. Wang, J., Ibrahim, A.G., O’Regan, D.: Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions. J. Fixed Point Theory Appl. 20, 1–25 (2018). (Art.59)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, Y., Liu, L., Zhang, X., Wu, Y.: Positive solutions of a fractional semipositone differential system arising from the study of HIV infection models. Appl. Math. Comput. 258, 312–324 (2015)

    MathSciNet  MATH  Google Scholar 

  64. Zhang, X., Liu, L., Wu, Y.: Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives. Appl. Math. Comput. 219, 1420–1433 (2012)

    MathSciNet  MATH  Google Scholar 

  65. Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advection-dispersion equation. Comput. Math. Appl. 68, 1794–1805 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang, X., Mao, C., Liu, L., Wu, Y.: Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 16, 205–222 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 66, 1–8 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhu, B., Liu, L., Wu, Y.: Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equation with delay. Appl. Math. Lett. 61, 73–79 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhang, J., Wang, J.: Numerical analysis for a class of Navier–Stokes equations with time fractional derivatives. Appl. Math. Comput. 336, 481–489 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are really thankful to the reviewers for their useful suggestions which improved this paper very well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Shah.

Ethics declarations

Competing interests

We declare that no competing interest exist regarding this paper.

Authors contribution

All authors equally contributed this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Science and Technology Program of Guizhou Province ([2017]5788), and Major Research Project of Innovative Group in Guizhou Education Department ([2018]012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, K., Wang, J. A numerical scheme based on non-discretization of data for boundary value problems of fractional order differential equations. RACSAM 113, 2277–2294 (2019). https://doi.org/10.1007/s13398-018-0616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-018-0616-7

Keywords

Mathematics Subject Classifications

Navigation