Advertisement

A common fixed point theorem of Fisher in b-metric spaces

  • Nawab Hussain
  • Zoran D. Mitrović
  • Stojan Radenović
Original Paper

Abstract

In this paper we have given a proof for Fisher contraction principle in b-metric spaces with increased range of the Lipschitzian constants and without continuity of the b-metric function, to generalize some of the results proved in Jovanović et al. (Fixed Point Theory Appl, 2010) and many others. Simple example is given to illustrate the validity and superiority of our results. As the applications of our results, we obtain fixed point theorems of Jungck and Banach in b-metric spaces.

Keywords

Fixed points Common fixed points B-metric space B-compatible 

Mathematics Subject Classification

47H10 

References

  1. 1.
    Bakhtin, I.A.: The contraction mapping principle in quasimetric spaces. Funct. Anal. Gos. Ped. Inst. Ulianowsk 30, 26–37 (1989)Google Scholar
  2. 2.
    Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5–11 (1993)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Dung, N.V., Hang, V.T.L.: On relaxations of contraction constants and Caristi’s theorem in b-metric spaces. J. Fixed Point Theory Appl. 18, 267–284 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fisher, B.: Four mappings with a common fixed point. J. Univ. Kuwait Sci. 8, 131–139 (1981)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Hussain, N., Mitrović, Z.D.: On multi-valued weak quasi-contractions in b-metric spaces. J. Nonlinear Sci. Appl. 10, 3815–3823 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hussain, N., Djorić, D., Kadelburg, Z., Radenović, S.: Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 2012, 126 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hussain, N., Shah, M.H.: KKM mappings in cone b-metric spaces. Comput. Math. Appl. 62, 1677–1684 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jovanović, M., Kadelburg, Z., Radenović, S.: Common fixed point results in metric-type spaces. Fixed Point Theory Appl. 2010, 15 (2010)Google Scholar
  9. 9.
    Jungck, G.: Commuting mappings and fixed points. Am. Math. Mon. 83, 261–263 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jungck, G.: Compatible mappings and common fixed points. Int. J. Math. Math. Sci. 9, 771–779 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Khamsi, M.A., Hussain, N.: KKM mappings in metric type spaces. Nonlinear Anal. 73, 3123–3129 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Miculescu, R., Mihail, A.: New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. (2017).  https://doi.org/10.1007/s11784-016-0400-2 MathSciNetzbMATHGoogle Scholar
  13. 13.
    Mitrović, Z.D., Radenović, S.: A common fixed point theorem of Jungck in rectangular b-metric spaces. Acta Math. Hung. (2017).  https://doi.org/10.1007/s10474-017-0750-2 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Roshan, J.R., Shobkolaei, N., Sedghi, S., Abbas, M.: Common fixed point of four maps in b-metric spaces. Hacet. J. Math. Stat. 43(4), 613–624 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  • Nawab Hussain
    • 1
  • Zoran D. Mitrović
    • 2
  • Stojan Radenović
    • 3
  1. 1.Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.University of Banja Luka, Faculty of Electrical EngineeringBanja LukaBosnia and Herzegovina
  3. 3.University of Belgrade, Faculty of Mechanical EngineeringBeograd 35Serbia

Personalised recommendations