Abstract
Employing a construction of Tsirelson-like spaces due to Argyros and Deliyanni, we show that the class of all Banach spaces which are isomorphic to a subspace of \( c_{0} \) is a complete analytic set with respect to the Effros Borel structure of separable Banach spaces. Moreover, the classes of all separable spaces with the Schur property and of all separable spaces with the Dunford–Pettis property are \(\Pi ^{1}_{2} \)-complete.
This is a preview of subscription content, access via your institution.
References
Argyros, S.A., Deliyanni, I.: Examples of asymptotic \( \ell _{1} \) Banach spaces. Trans. Am. Math. Soc. 349(3), 973–995 (1997)
Argyros, S.A., Gasparis, I., Motakis, P.: On the structure of separable \( \cal{L}_{\infty } \)-spaces. Mathematika 62(3), 685–700 (2016)
Behrends, E.: New proofs of Rosenthal’s \( \ell _{1} \)-theorem and the Josefson-Nissenzweig theorem. Bull. Polish Acad. Sci. Math. 43(4), 283–295 (1995)
Bossard, B.: A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces. Fund. Math. 172(2), 117–152 (2002)
Bourgain, J.: On separable Banach spaces, universal for all separable reflexive spaces. Proc. Am. Math. Soc. 79(2), 241–246 (1980)
Bourgain, J.: The Szlenk index and operators on \( C(K) \)-spaces. Bull. Soc. Math. Belg. Ser. B 31, 87–117 (1979)
Braga, B.M.: On the complexity of some classes of Banach spaces and non-universality. Czechoslovak Math. J. 64(4), 1123–1147 (2014)
Braga, B.M.: Duality on Banach spaces and a Borel parametrized version of Zippin’s theorem. Ann. Inst. Fourier 65(6), 2413–2435 (2015)
Diestel, J.: A survey of results related to the Dunford–Pettis property. Contemp. Math. Am. Math. Soc. 2, 15–60 (1980)
Fabian, M., Habala, P., Hájek, P., Montesinos Santalucía, V., Pelant, J., Zizler, V.: Functional analysis and infinite-dimensional geometry. CMS Books in Mathematics 8. Springer (2001)
Ferenczi, V., Louveau, A., Rosendal, C.: The complexity of classifying separable Banach spaces up to isomorphism. J. Lond. Math. Soc. 79(2), 323–345 (2009)
Figiel, T., Johnson, W.B.: A uniformly convex Banach space which contains no \( \ell _{p} \). Compos. Math. 29(2), 179–190 (1974)
Ghawadrah, G.: Non-isomorphic complemented subspaces of the reflexive Orlicz function spaces \( L^{\Phi }[0, 1] \). Proc. Am. Math. Soc. 144(1), 285–299 (2016)
Godefroy, G.: Analytic sets of Banach spaces. Rev. R. Acad. Cien. Ser. A. Mat. 104(2), 365–374 (2010)
Godefroy, G.: The complexity of the isomorphism class of some Banach spaces. J. Nonlinear Convex Anal. 18(2), 231–240 (2017)
Godefroy, G.: The isomorphism classes of \( \ell _{p} \) are Borel. Houston J. Math. (to appear)
Godefroy, G., Kalton, N.J.: Isometric embeddings and universal spaces. Extr. Math. 22(2), 179–189 (2007)
Godefroy, G., Kalton, N.J., Lancien, G.: Szlenk indices and uniform homeomorphisms. Trans. Am. Math. Soc. 353(10), 3895–3918 (2001)
Kačena, M., Kalenda, O.F.K., Spurný, J.: Quantitative Dunford–Pettis property. Adv. Math. 234, 488–527 (2013)
Kalenda, O.F.K., Spurný, J.: On a difference between quantitative weak sequential completeness and the quantitative Schur property. Proc. Am. Math. Soc. 140(10), 3435–3444 (2012)
Kalton, N.J.: On subspaces of \( c_{0} \) and extension of operators into \( C(K) \)-spaces. Quart. J. Math. 52(3), 313–328 (2001)
Kechris, A.S.: Classical descriptive set theory. Graduate Texts in Mathematics, vol. 156. Springer (1995)
Kubiś, W., Solecki, S.: A proof of uniqueness of the Gurariĭ space. Israel J. Math. 195(1), 449–456 (2013)
Kurka, O.: Amalgamations of classes of Banach spaces with a monotone basis. Stud. Math. 234(2), 121–148 (2016)
Lusky, W.: The Gurarij spaces are unique. Arch. Math. 27(6), 627–635 (1976)
Melleray, J.: Computing the complexity of the relation of isometry between separable Banach spaces. Math. Log. Q. 53(2), 128–131 (2007)
Miller, D.E.: On the measurability of orbits in Borel actions. Proc. Am. Math. Soc. 63(1), 165–170 (1977)
Tsirelson, B.S.: Not every Banach space contains an imbedding of \( \ell _{p} \) or \( c_{0} \). Funct. Anal. Appl. 8(2), 138–141 (1974)
Acknowledgements
The author is grateful to the referees for numerous suggestions that helped to improve the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
The research was supported by the grant GAČR 14-04892P. The author is a junior researcher in the University Centre for Mathematical Modelling, Applied Analysis and Computational Mathematics (MathMAC).
Rights and permissions
About this article
Cite this article
Kurka, O. Tsirelson-like spaces and complexity of classes of Banach spaces. RACSAM 112, 1101–1123 (2018). https://doi.org/10.1007/s13398-017-0412-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13398-017-0412-9
Keywords
- Effros Borel structure
- Complete analytic set
- Tsirelson space
- Banach space \( c_{0} \)
- Schur property
Mathematics Subject Classification
- Primary 46B25
- 54H05
- Secondary 46B03
- 46B20