Skip to main content

Tsirelson-like spaces and complexity of classes of Banach spaces


Employing a construction of Tsirelson-like spaces due to Argyros and Deliyanni, we show that the class of all Banach spaces which are isomorphic to a subspace of \( c_{0} \) is a complete analytic set with respect to the Effros Borel structure of separable Banach spaces. Moreover, the classes of all separable spaces with the Schur property and of all separable spaces with the Dunford–Pettis property are \(\Pi ^{1}_{2} \)-complete.

This is a preview of subscription content, access via your institution.


  1. Argyros, S.A., Deliyanni, I.: Examples of asymptotic \( \ell _{1} \) Banach spaces. Trans. Am. Math. Soc. 349(3), 973–995 (1997)

    Article  MathSciNet  Google Scholar 

  2. Argyros, S.A., Gasparis, I., Motakis, P.: On the structure of separable \( \cal{L}_{\infty } \)-spaces. Mathematika 62(3), 685–700 (2016)

    Article  MathSciNet  Google Scholar 

  3. Behrends, E.: New proofs of Rosenthal’s \( \ell _{1} \)-theorem and the Josefson-Nissenzweig theorem. Bull. Polish Acad. Sci. Math. 43(4), 283–295 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Bossard, B.: A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces. Fund. Math. 172(2), 117–152 (2002)

    Article  MathSciNet  Google Scholar 

  5. Bourgain, J.: On separable Banach spaces, universal for all separable reflexive spaces. Proc. Am. Math. Soc. 79(2), 241–246 (1980)

    Article  MathSciNet  Google Scholar 

  6. Bourgain, J.: The Szlenk index and operators on \( C(K) \)-spaces. Bull. Soc. Math. Belg. Ser. B 31, 87–117 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Braga, B.M.: On the complexity of some classes of Banach spaces and non-universality. Czechoslovak Math. J. 64(4), 1123–1147 (2014)

    Article  MathSciNet  Google Scholar 

  8. Braga, B.M.: Duality on Banach spaces and a Borel parametrized version of Zippin’s theorem. Ann. Inst. Fourier 65(6), 2413–2435 (2015)

    Article  MathSciNet  Google Scholar 

  9. Diestel, J.: A survey of results related to the Dunford–Pettis property. Contemp. Math. Am. Math. Soc. 2, 15–60 (1980)

  10. Fabian, M., Habala, P., Hájek, P., Montesinos Santalucía, V., Pelant, J., Zizler, V.: Functional analysis and infinite-dimensional geometry. CMS Books in Mathematics 8. Springer (2001)

  11. Ferenczi, V., Louveau, A., Rosendal, C.: The complexity of classifying separable Banach spaces up to isomorphism. J. Lond. Math. Soc. 79(2), 323–345 (2009)

    Article  MathSciNet  Google Scholar 

  12. Figiel, T., Johnson, W.B.: A uniformly convex Banach space which contains no \( \ell _{p} \). Compos. Math. 29(2), 179–190 (1974)

    MathSciNet  MATH  Google Scholar 

  13. Ghawadrah, G.: Non-isomorphic complemented subspaces of the reflexive Orlicz function spaces \( L^{\Phi }[0, 1] \). Proc. Am. Math. Soc. 144(1), 285–299 (2016)

    Article  MathSciNet  Google Scholar 

  14. Godefroy, G.: Analytic sets of Banach spaces. Rev. R. Acad. Cien. Ser. A. Mat. 104(2), 365–374 (2010)

    Article  MathSciNet  Google Scholar 

  15. Godefroy, G.: The complexity of the isomorphism class of some Banach spaces. J. Nonlinear Convex Anal. 18(2), 231–240 (2017)

    MathSciNet  Google Scholar 

  16. Godefroy, G.: The isomorphism classes of \( \ell _{p} \) are Borel. Houston J. Math. (to appear)

  17. Godefroy, G., Kalton, N.J.: Isometric embeddings and universal spaces. Extr. Math. 22(2), 179–189 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Godefroy, G., Kalton, N.J., Lancien, G.: Szlenk indices and uniform homeomorphisms. Trans. Am. Math. Soc. 353(10), 3895–3918 (2001)

    Article  MathSciNet  Google Scholar 

  19. Kačena, M., Kalenda, O.F.K., Spurný, J.: Quantitative Dunford–Pettis property. Adv. Math. 234, 488–527 (2013)

    Article  MathSciNet  Google Scholar 

  20. Kalenda, O.F.K., Spurný, J.: On a difference between quantitative weak sequential completeness and the quantitative Schur property. Proc. Am. Math. Soc. 140(10), 3435–3444 (2012)

    Article  MathSciNet  Google Scholar 

  21. Kalton, N.J.: On subspaces of \( c_{0} \) and extension of operators into \( C(K) \)-spaces. Quart. J. Math. 52(3), 313–328 (2001)

    Article  Google Scholar 

  22. Kechris, A.S.: Classical descriptive set theory. Graduate Texts in Mathematics, vol. 156. Springer (1995)

  23. Kubiś, W., Solecki, S.: A proof of uniqueness of the Gurariĭ space. Israel J. Math. 195(1), 449–456 (2013)

    Article  MathSciNet  Google Scholar 

  24. Kurka, O.: Amalgamations of classes of Banach spaces with a monotone basis. Stud. Math. 234(2), 121–148 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Lusky, W.: The Gurarij spaces are unique. Arch. Math. 27(6), 627–635 (1976)

    Article  MathSciNet  Google Scholar 

  26. Melleray, J.: Computing the complexity of the relation of isometry between separable Banach spaces. Math. Log. Q. 53(2), 128–131 (2007)

    Article  MathSciNet  Google Scholar 

  27. Miller, D.E.: On the measurability of orbits in Borel actions. Proc. Am. Math. Soc. 63(1), 165–170 (1977)

    Article  MathSciNet  Google Scholar 

  28. Tsirelson, B.S.: Not every Banach space contains an imbedding of \( \ell _{p} \) or \( c_{0} \). Funct. Anal. Appl. 8(2), 138–141 (1974)

    Article  Google Scholar 

Download references


The author is grateful to the referees for numerous suggestions that helped to improve the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ondřej Kurka.

Additional information

The research was supported by the grant GAČR 14-04892P. The author is a junior researcher in the University Centre for Mathematical Modelling, Applied Analysis and Computational Mathematics (MathMAC).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurka, O. Tsirelson-like spaces and complexity of classes of Banach spaces. RACSAM 112, 1101–1123 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Effros Borel structure
  • Complete analytic set
  • Tsirelson space
  • Banach space \( c_{0} \)
  • Schur property

Mathematics Subject Classification

  • Primary 46B25
  • 54H05
  • Secondary 46B03
  • 46B20