Advertisement

The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 6

  • Adrián Bacelo
Original Paper

Abstract

An important problem in the study of Riemann and Klein surfaces is determining their full automorphism groups. Up to now only very partial results are known, concerning surfaces of low genus or families of surfaces with special properties. This paper deals with non-orientable unbordered Klein surfaces. In this case the solution of the problem is known for surfaces of genus 1, 2, 3, 4 and 5, and for hyperelliptic surfaces. Here we explicitly obtain the full automorphism group of all surfaces of genus 6.

Keywords

Klein surfaces Full group of automorphisms Symmetric crosscap number 

Mathematics Subject Classification

Primary 57M60 Secondary 20F05 20H10 30F50 

References

  1. 1.
    Alling, N.L., Greenleaf, N.: Foundations of the theory of Klein surfaces. Lecture Notes in Mathematics, vol. 219. Springer, Berlin (1971)Google Scholar
  2. 2.
    Bujalance, E.: Normal NEC signatures. Ill. J. Math. 26, 519–530 (1982)MATHGoogle Scholar
  3. 3.
    Bujalance, E.: Cyclic groups of automorphisms of compact non-orinetable Klein surfaces without boundary. Pac. J. Math. 109, 279–289 (1983)CrossRefMATHGoogle Scholar
  4. 4.
    Bujalance, E., Bujalance, J.A., Gromadzki, G., Martínez, E.: The groups of automorphisms of non-orientable hyperelliptic Klein surfaces without boundary. Lecture Notes in Mathematics, vol. 1398, pp. 43–51. Springer, Berlin (1989)Google Scholar
  5. 5.
    Bujalance, E., Cirre, F.J., Conder, M.D.E.: Extensions of finite cyclic groups actions on non-orientable surfaces. Trans. Am. Math. Soc. 365, 4209–4227 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bujalance, E., Etayo, J.J., Gamboa, J.M., Gromadzki, G.: Automorphism groups of compact bordered Klein surfaces. A combinatorial approach. Lecture Notes in Mathematics, vol. 1439. Springer, Berlin (1990)Google Scholar
  7. 7.
    Bujalance, E., Etayo, J.J., Martínez, E.: The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 3, 4 and 5. Rev. Mat. Compl. 27, 305–326 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Conder, M., Dobcsányi, P.: Determination of all regular maps of small genus. J. Combin. Theory Ser. B 81(2), 224–242 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
  10. 10.
    Coxeter, H.S.M.: The abstract groups \(G^{m, n, p}\). Trans. Am. Math. Soc. 45(1), 73–150 (1939)MATHGoogle Scholar
  11. 11.
    Estévez, J.L., Izquierdo, M.: Non-normal pairs of non-Euclidean crystallographic groups. Bull. London Math. Soc. 38, 113–123 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Etayo, J.J., Martínez, E.: The symmetric crosscap number of the groups of small-order. J. Algebra Appl. 12, 1250164 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Feito, P.: Teorema de Cayley. Trabajo Fin de Grado, Universidad Complutense, Aplicación a algunos grupos de interés para superficies (2016)Google Scholar
  14. 14.
    Gromadzki, G.: Abelian groups of automorphisms of compact non-orientable Klein surfaces without boundary. Comment. Math. Prace Mat. 28, 197–217 (1989)MathSciNetMATHGoogle Scholar
  15. 15.
    Hall Jr., M., Senior, J.K.: The groups of order \(2^n\) (\(n \le 6\)). Mc Millan Co., New York (1964)MATHGoogle Scholar
  16. 16.
    Macbeath, A.M.: The classification of non-Euclidean crystallographic groups. Can. J. Math. 19, 1192–1205 (1967)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    May, C.L.: The symmetric crosscap number of a group. Glasgow Math. J. 41, 399–410 (2001)MathSciNetMATHGoogle Scholar
  18. 18.
    Preston, R.: Projective structures and fundamental domains on compact Klein surfaces. Thesis Univ. of Texas (1975)Google Scholar
  19. 19.
    Singerman, D.: Automorphisms of compact non-orientable Riemann surfaces. Glasgow Math. J. 12, 50–59 (1971)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Thomas, A.D., Wood, G.V.: Group Tables. Shiva Publishing Limited, Orpington (1980)MATHGoogle Scholar
  21. 21.
    Tucker, T.W.: Symmetric embeddings of Cayley graphs in non-orientable surfaces. In: Alavy, I., et al. (eds.) Graph Theory, Combinatorics and Applications, pp. 1105–1120. Wiley, New York (1991)Google Scholar
  22. 22.
    Wilkie, H.C.: On non-Euclidean crystallographic groups. Math. Z. 91, 87–102 (1966)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2017

Authors and Affiliations

  1. 1.Departamento de Álgebra, Facultad de MatemáticasUniversidad ComplutenseMadridSpain

Personalised recommendations