An application of the Baker method to Jeśmanowicz’ conjecture on Pythagorean triples

  • Wang TingtingEmail author
  • Wang Xiaonan
  • Jiang Yingzhao
Original Paper


Let n be a positive integer, and let (abc) be a primitive Pythagorean triple with \(a^2+b^2=c^2\). A positive integer solution (xyz) of the equation \((an)^x+(bn)^y=(cn)^z\) is called exceptional if \((x,y,z)\ne (2,2,2)\). Sixty years ago, L. Jeśmanowicz conjectured that, for any n, the equation has no exceptional solutions. This problem is not resolved as yet. In this paper, using the Baker method, we prove that if \(n>1\), \(b+1=c\) and \(c>500000\), then the equation has no exceptional solutions (xyz) with \(y>z>x\).


Exponential diophantine equation Pythagorean triple Jeśmanowicz conjecture Baker method 

Mathematics Subject Classification




The authors express their gratitude to the referees for very helpful and detailed comments.


  1. 1.
    Bugeaud, Y.: Linear forms in \(p\)-adic logarithms and the diophantine equation \((x^n-1)/(x-1)=y^q\). Math. Proc. Camb. Philos. Soc. 127(2), 373–381 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dem’janenko, V.A.: On Jeśmanowicz’ problem for Pythagorean numbers, lzv. Vyssh. Uchebn. Zaved. Mat. 48(1), 52–56 (1965). (in Russian)Google Scholar
  3. 3.
    Deng, M.J.: A note on the diophantine equation \((na)^x+(nb)^y=(nc)^z\). Bull. Austral. Math. Soc. 89(2), 316–321 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jeśmanowicz, L.: Several remarks on Pythagorean numbers. Wiadom. Mat. 1(2), 196–202 (1955/1956) (in Polish) Google Scholar
  5. 5.
    Le, M.H.: A note on Jeśmanowicz’ conjecture concerning Pythagorean triples. Bull. Austral. Math. Soc. 59(3), 477–480 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mordell, L.J.: Diophantine equations. Academic Press, London (1969)zbMATHGoogle Scholar
  7. 7.
    Tang, M., Weng, J.X.: Jeśmanowicz’ conjecture revisited II (2013). arXiv:1304.0514vl [math. NT]
  8. 8.
    Yang, H., Fu, R.Q.: A note on Jeśmanowicz’ conjecture concerning Pythagorean triples. J. Number Theory 156(1), 183–194 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2017

Authors and Affiliations

  1. 1.College of ScienceNorthwest A&F UniversityYanglingPeople’s Republic of China

Personalised recommendations