Solvability of a nonlinear Volterra–Stieltjes integral equation in the class of bounded and continuous functions of two variables

  • Beata Rzepka
Original Paper


The aim of this paper is to investigate the solvability of a nonlinear Volterra–Stieltjes integral equation in two variables in the space \(BC(\mathbb {R_+} \times \mathbb {R_+},\mathbb {R})\). We will consider this equation in the space of real continuous and bounded functions on the set \(\mathbb {R_+} \times \mathbb {R_+}\). Applying the fixed point theorem of Darbo type and the technique of measure of noncompactness we will show that solutions of the mentioned equation exist. We will also give the characterization of these solutions. At the end of our considerations we will introduce some special cases of the studied equation and we will include an example illustrating our main result.


Nonlinear Volterra–Stieltjes integral equation in two variables Fixed point theorem Measure of noncompactness Uniform local attractivity Asymptotic stability 

Mathematics Subject Classification

Primary 45G10 Secondary 47H08 


  1. 1.
    Abbas, S., Benchohra, M., Nieto, J.J.: Global attractivity of solutions for nonlinear fractional order Riemann–Liouville Volterra–Stieltjes partial integral equations. Electron. J. Qual. Theory Differ. Equ. 81, 1–15 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aghajani, A., Banaś, J., Jalilian, Y.: Existence of solutions for a class of nonlinear Volterra singular integral equations. Comput. Math. Appl. 62, 1215–1227 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E., Sadovskii, B.N.: Measures of Noncompactness and Condensing Operators. Birkhäuser, Basel (1992)CrossRefGoogle Scholar
  4. 4.
    Appell, J., Banaś, J., Merentes, N.: Bounded Variation and Around. Series in Nonlinear Analysis and Applications, vol. 17. Walter de Gruyter, Berlin (2014)MATHGoogle Scholar
  5. 5.
    Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge Tracts in Mathematics, vol. 95. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  6. 6.
    Ayerbe Toledano, J.M., Domínguez Benavides, T., López Acedo, G.: Measures of Noncompactness in Metric Fixed Point Theory. In: Operator Theory Advances and Applications, vol. 99. Birkhäuser, Basel (1997)Google Scholar
  7. 7.
    Banaś, J., Balachandran, K., Julie, D.: Existence and global attractivity of solutions of a nonlinear functional integral equation. Appl. Math. Comput. 216, 261–268 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, vol. 60. Marcel Dekker, New York (1980)MATHGoogle Scholar
  9. 9.
    Banaś, J., Rzepka, B.: An application of a measure of noncompactness in the study of asymptotic stability. Appl. Math. Lett. 16, 1–6 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Banaś, J., Zaja̧c, T.: A new approach to the theory of functional integral equations of fractional order. J. Math. Anal. Appl. 375, 375–387 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Burton, T.A.: Volterra Integral and Differential Equations. Academic Press, New York (1983)MATHGoogle Scholar
  12. 12.
    Copson, E.T.: On an integral equation arising in the theory of diffraction. Q. J. Math. 17, 19–34 (1946)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Corduneanu, C.: Integral Equations and Applications. Cambridge University Press, Cambridge (1991)CrossRefMATHGoogle Scholar
  14. 14.
    Darbo, G.: Punti uniti in trasformazioni a codominio non compatto. Rend. Sem. Mat. Univ. Padova 24, 84–92 (1955)MathSciNetMATHGoogle Scholar
  15. 15.
    Darwish, M.A., Banaś, J.: Existence and characterization of solutions of nonlinear Volterra–Stieltjes integral equations in two variables. Abst. Appl. Anal. 2014, Article ID 618434 (2014)MathSciNetGoogle Scholar
  16. 16.
    Darwish, M.A., Banaś, J., Alzahrani, E.O.: The existence and attractivity of solutions of an Urysohn integral equation on an unbounded interval. Abst. Appl. Anal. 2013, Article ID 147409 (2013)MathSciNetMATHGoogle Scholar
  17. 17.
    Dhage, B.C.: Attractivity and positivity results for nonlinear functional integral equations via measure of noncompactness. Differ. Equ. Appl. 2(3), 299–318 (2010)MathSciNetMATHGoogle Scholar
  18. 18.
    Dung, N.T.: Fractional stochastic differential equations with applications to finance. J. Math. Anal. Appl. 397(1), 334–348 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)CrossRefMATHGoogle Scholar
  20. 20.
    Hu, S., Khavanin, M., Zhuang, W.: Integral equations arising in the kinetic theory of gases. Appl. Anal. 34(3), 261–266 (1989)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hu, X., Yan, J.: The global attractivity and asymptotic stability of solution of a nonlinear integral equation. J. Math. Anal. Appl. 321, 147–156 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)MATHGoogle Scholar
  23. 23.
    Natanson, I.P.: Theory of Functions of a Real Variable. Ungar, New York (1960)MATHGoogle Scholar
  24. 24.
    O’Regan, D., Meehan, M.: Existence Theory for Nonlinear Integral and Integrodifferential Equations. Kluwer Academic, Dordrecht (1998)CrossRefMATHGoogle Scholar
  25. 25.
    Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter, Berlin (1996)MATHGoogle Scholar
  26. 26.
    Rzepka, B.: On attractivity and asymptotic stability of solutions of a quadratic Volterra integral equation of fractional order. Topol. Methods Nonlinear Anal. 32, 89–102 (2008)Google Scholar
  27. 27.
    Rzepka, B.: On local attractivity and asymptotic stability of solutions of nonlinear Volterra–Stieltjes integral equations in two variables. Zeit. Anal. Anwend. 36(1), 79–98 (2017)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Saxena, R.K., Kalla, S.L.: On a fractional generalization of the free electron laser equation. Appl. Math. Comput. 143, 89–97 (2003)MathSciNetMATHGoogle Scholar
  29. 29.
    Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles. Fields and Media. Springer, Heidelberg (2011)Google Scholar
  30. 30.
    Zaja̧c, T.: Solvability of fractional integral equations on an unbounded interval through the theory of Volterra–Stieltjes integral equations. Zeit. Anal. Anwend. 33(1), 65–85 (2014)Google Scholar

Copyright information

© Springer-Verlag Italia 2017

Authors and Affiliations

  1. 1.Department of Nonlinear AnalysisRzeszów University of TechnologyRzeszówPoland

Personalised recommendations