Skip to main content

A note on Young’s inequality

Abstract

In this note we obtain two new reverses of Young’s inequality.

This is a preview of subscription content, access via your institution.

References

  1. Furuichi, S.: Refined Young inequalities with Specht’s ratio. J. Egypt. Math. Soc. 20, 46–49 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  2. Furuichi, S.: On refined Young inequalities and reverse inequalities. J. Math. Inequal. 5, 21–31 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  3. Kittaneh, F., Manasrah, Y.: Improved Young and Heinz inequalities for matrix. J. Math. Anal. Appl. 361, 262–269 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  4. Kittaneh, F., Manasrah, Y.: Reverse Young and Heinz inequalities for matrices. Linear Multilinear Algebra 59, 1031–1037 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  5. Liao, W., Wu, J., Zhao, J.: New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant. Taiwan. J. Math. 19(2), 467–479 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  6. Specht, W.: Zer Theorie der elementaren Mittel. Math. Z. 74, 91–98 (1960)

    MathSciNet  Article  MATH  Google Scholar 

  7. Tominaga, M.: Specht’s ratio in the Young inequality. Sci. Math. Jpn. 55, 583–588 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Zuo, G., Shi, G., Fujii, M.: Refined Young inequality with Kantorovich constant. J. Math. Inequal. 5, 551–556 (2011)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Dragomir.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dragomir, S.S. A note on Young’s inequality. RACSAM 111, 349–354 (2017). https://doi.org/10.1007/s13398-016-0300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-016-0300-8

Keywords

  • Young’s inequality
  • Convex functions
  • Arithmetic mean-geometric mean inequality

Mathematics Subject Classification

  • 26D15
  • 26D10