An arithmetic Zariski pair of line arrangements with non-isomorphic fundamental group

  • Enrique Artal Bartolo
  • José Ignacio Cogolludo-Agustín
  • Benoît Guerville-Ballé
  • Miguel Marco-Buzunáriz
Original Paper

Abstract

In a previous work, the third named author found a combinatorics of line arrangements whose realizations live in the cyclotomic group of the fifth roots of unity and such that their non-complex-conjugate embedding are not topologically equivalent in the sense that they are not embedded in the same way in the complex projective plane. That work does not imply that the complements of the arrangements are not homeomorphic. In this work we prove that the fundamental groups of the complements are not isomorphic. It provides the first example of a pair of Galois-conjugate plane curves such that the fundamental groups of their complements are not isomorphic (despite the fact that they have isomorphic profinite completions).

Keywords

Line arrangements Zariski pairs Number fields Fundamental group 

Mathematics Subject Classification

14N20 32S22 14F35 14H50 14F45 14G32 

Notes

Acknowledgements

The authors want to thank the anonymous referees for their suggestions that have helped in the exposition of this paper.

References

  1. 1.
    Abelson, H.: Topologically distinct conjugate varieties with finite fundamental group. Topology 13, 161–176 (1974)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Artal, E.: Sur les couples de Zariski. J. Algebraic Geom. 3(2), 223–247 (1994)MathSciNetMATHGoogle Scholar
  3. 3.
    Artal, E.: Topology of arrangements and position of singularities. Ann. Fac. Sci. Toulouse Math. (6) 23 (2014) (no. 2, 223–265)Google Scholar
  4. 4.
    Artal, E., Carmona, J., Cogolludo-Agustín, J.I.: Braid monodromy and topology of plane curves. Duke Math. J. 118(2), 261–278 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Artal, E., Carmona, J., Cogolludo-Agustín, J.I.: Effective invariants of braid monodromy. Trans. Am. Math. Soc. 359(1), 165–183 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Artal, E., Carmona, J., Cogolludo-Agustín, J.I., Marco, M.Á.: Topology and combinatorics of real line arrangements. Compos. Math. 141(6), 1578–1588 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Artal, E., Carmona, J., Cogolludo-Agustín, J.I., Marco, M.Á.: Invariants of combinatorial line arrangements and Rybnikov’s example, Singularity theory and its applications. In: Izumiya, S., Ishikawa, G., Tokunaga, H., Shimada, I., Sano, T. (eds.) Advanced Studies in Pure Mathematics, vol. 43. Mathematical Society of Japan, Tokyo (2007)Google Scholar
  8. 8.
    Artal, E., Cogolludo-Agustín, J.I., Tokunaga, H., A survey on Zariski pairs, Algebraic geometry in East Asia-Hanoi, Advanced Studies in Pure Mathematics, vol. 50, Mathematical Society of Japan, Tokyo 2008, 1–100 (2005)Google Scholar
  9. 9.
    Artal, E., Florens, V., Guerville-Ballé, B.: A topological invariant of line arrangements. Preprint available at arXiv:1407.3387 [math.GT] (2014) (Submitted)
  10. 10.
    Charles, F.: Conjugate varieties with distinct real cohomology algebras. J. Reine Angew. Math. 630, 125–139 (2009)MathSciNetMATHGoogle Scholar
  11. 11.
    Cohen, D.C., Suciu, A.I.: The braid monodromy of plane algebraic curves and hyperplane arrangements. Comment. Math. Helv. 72(2), 285–315 (1997)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Degtyarëv, A.I.: On deformations of singular plane sextics. J. Algebraic Geom. 17(1), 101–135 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Falk, M., Yuzvinsky, S.: Multinets, resonance varieties, and pencils of plane curves. Compos. Math. 143(4), 1069–1088 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Florens, V., Guerville-Ballé, B., Marco, M.Á.: On complex line arrangements and their boundary manifolds. Math. Proc. Cambridge Philos. Soc. 159(2), 189–205 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    González-Diez, G., Torres-Teigell, D.: Non-homeomorphic Galois conjugate Beauville structures on \({{\rm PSL}}(2, p)\). Adv. Math. 229(6), 3096–3122 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Guerville-Ballé, B.: Zariski pairs of line arrangements with twelve lines. Geom. Topol. 20, 537–553 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Marco, M.Á.: A description of the resonance variety of a line combinatorics via combinatorial pencils. Graphs Combin. 25(4), 469–488 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent. Math. 56(2), 167–189 (1980)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Rajan, C.S.: An example of non-homeomorphic conjugate varieties. Math. Res. Lett. 18(5), 937–942 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Rybnikov, G.: On the fundamental group of the complement of a complex hyperplane arrangement. Funct. Anal. Appl. 45, 137–148. Preprint available at arXiv:math.AG/9805056 (2011)
  21. 21.
    Serre, J.-P.: Exemples de variétés projectives conjuguées non homéomorphes. C. R. Acad. Sci. Paris Sér. I Math. 258, 4194–4196 (1964)MATHGoogle Scholar
  22. 22.
    Shimada, I.: On arithmetic Zariski pairs in degree 6. Adv. Geom. 8(2), 205–225 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Shimada, I.: Non-homeomorphic conjugate complex varieties, Singularities–Niigata-Toyama, Advanced Studies in Pure Mathematics, vol. 56, Mathematical Society of Japan, Tokyo 2009, 285–301 (2007)Google Scholar
  24. 24.
    Stein, W.A., et al.: Sage Mathematics Software (Version 6.7), The Sage Development Team. http://www.sagemath.org (2015)
  25. 25.
    Yuzvinsky, S.: A new bound on the number of special fibers in a pencil of curves. Proc. Am. Math. Soc. 137(5), 1641–1648 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2016

Authors and Affiliations

  1. 1.Departamento de Matemáticas, IUMAUniversidad de ZaragozaZaragozaSpain
  2. 2.Department of MathematicsTokyo Gakugei UniversityKogane-shiJapan

Personalised recommendations