Skip to main content
Log in

The variational analysis of a nonlinear anisotropic problem with no-flux boundary condition

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

We study the nonlinear degenerate anisotropic problem

$$\begin{aligned} \left\{ \begin{array}{ll} - \sum _{i=1}^N\partial _{x_i} a_i(x,\partial _{x_i}u)+b(x)|u|^{p_M(x)-2}u = \lambda |u|^{q(x)-2}u &{}\quad \text {in } \Omega ,\\ u(x)=\text {constant} &{}\quad \text {on } \partial \Omega \\ \sum _{i=1}^N\int _{\partial \Omega }a_i(x,\partial _{x_i}u)\nu _id\sigma =0, \end{array}\right. \end{aligned}$$

where \(\Omega \subset \mathbb R^N\) is a bounded domain with smooth boundary. The constant value of the boundary data is not specified, whereas the zero integral term corresponds to a no-flux boundary condition. In the case when \(|u|^{q(x)-2}u\) “dominates” the left-hand side, we show that a nontrivial solution exists for all positive values of \(\lambda \). If the term \(|u|^{q(x)-2}u\) is dominated by the left-hand side, we prove that a solution exists either for small or for large values of \(\lambda >0\). The proofs combine variational arguments with energy estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  2. Antontsev, S., Diaz, J.I., Shmarev, S.: Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics. Series Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (2002)

    Book  MATH  Google Scholar 

  3. Bendahmane, M., Karlsen, K.H.: Renormalized solutions of an anisotropic reaction-diffusion-advection system with \(L^1\)-data. Commun. Pure Appl. Anal. 5, 733–762 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bendahmane, M., Langlais, M., Saad, M.: On some anisotropic reaction-diffusion systems with \(L^1\)-data modeling the propagation of an epidemic disease. Nonlinear Anal. 54, 617–636 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berestycki, B., Brezis, H.: On a free boundary problem arising in plasma physics. Nonlinear Anal. 4, 415–436 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berstein, I.B., Frieman, E.A., Kruskal, M.D., Kulsrud, R.M.: An energy principle for hydromagnetic stability problems. Proc. R. Soc. 244, 17–40 (1958)

    Article  Google Scholar 

  7. Besov, O.: Imbeddings of an anisotropic Sobolev space for a domain with the flexible horn condition. Tr. Mat. Inst. Steklova 181, 3–14 (1988); translated in Proc. Steklov Inst. Math. 4 (1989), 1–13

  8. Bojowald, M., Hernandez, H., Morales-Tecotl, H.: A perturbative degrees of freedom in loop quantum gravity: anisotropies. Class. Quantum Grav. 23, 3491–3516 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Boureanu, M.M., Rădulescu, V.: Anisotropic Neumann problems Sobolev spaces with variable exponent. Nonlinear Anal. 75, 4471–4482 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boureanu, M.M., Udrea, D.N.: Existence and multiplicity results for elliptic problems with \(p(\cdot )\)-growth conditions. Nonlinear Anal. 14, 1829–1844 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eisenriegler, E.: Anisotropic colloidal particles in critical fluids. J. Chem. Phys. 121, 32–99 (2004)

    Article  Google Scholar 

  12. Eisenriegler, E.: Anisotropic colloidal particles interacting with polymers in a good solvent. J. Chem. Phys. 124, 144–212 (2006)

    Article  Google Scholar 

  13. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fan, X.L.: Anisotropic variable exponent Sobolev spaces and \(\overrightarrow{p}(x)\)-Laplacian equations. Complex Var. Elliptic Equ. 55, 1–20 (2010)

    Article  MathSciNet  Google Scholar 

  15. Fan, X.L., Zhao, D.: On the spaces \(L^{p(x)}\) and \(W^{m, p(x)}\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Garnier, J.: High-frequency asymptotics for Maxwell’s equations in anisotropic media, Part I: linear geometric and diffractive optics. J. Math. Phys. 42, 1612–1635 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Garnier, J.: High-frequency asymptotics for Maxwell’s equations in anisotropic media, Part II: nonlinear propagation and frequency conversion. J. Math. Phys. 42, 1636–1654 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fragala, I., Gazzola, F., Kawohl, B.: Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 715–734 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. El Hamidi, A., Vétois, J.: Sharp Sobolev asymptotics for critical anisotropic equations. Arch. Ration. Mech. Anal. 192, 1–36 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ji, C.: An eigenvalue of an anisotropic quasilinear elliptic equation with variable exponent and Neumann boundary condition. Nonlinear Anal. 71, 4507–4514 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kováčik, O., Rákosník, J.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{1, p(x)}(\Omega )\). Czechoslov. Math. J. 41, 592–618 (1991)

    Google Scholar 

  22. Kruzhkov, S.N., Kolodii, I.M.: On the theory of anisotropic Sobolev spaces. Uspekhi Mat. Nauk 38, 207–208 (1983); translated in Russian Math. Surveys 38(1983), 188–189 (1983)

  23. Kruzhkov, S.N., Korolev, A.G.: On embedding theory for anisotropic function spaces. Dokl. Akad. Nauk SSSR 285, 1054–1057 (1985); translated in Soviet Math. Dokl. 32(1985), 829–832 (1985)

  24. Nikol’skii, S.M.: On imbedding, continuation and approximation theorems for differentiable functions of several variables. Russ. Math. Surv. 16, 55–104 (1961)

    Article  Google Scholar 

  25. Rakosnik, J.: Some remarks to anisotropic Sobolev spaces I. Beitr. Anal. 13, 55–68 (1979)

    MATH  MathSciNet  Google Scholar 

  26. Rakosnik, J.: Some remarks to anisotropic Sobolev spaces II. Beitr. Anal. 15, 127–140 (1981)

    MATH  MathSciNet  Google Scholar 

  27. Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equatios and Hamiltonian Systems. Springer, Berlin (1996)

    Book  Google Scholar 

  28. Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ricer. Mat. 18, 3–24 (1969)

    MATH  MathSciNet  Google Scholar 

  29. Ven’-tuan, L.: On imbedding theorems for spaces of functions with partial derivatives of various degrees of summability. Vestn. Leningr. Univ. 16, 23–37 (1961)

    MATH  Google Scholar 

  30. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart (1998)

    MATH  Google Scholar 

  31. Zou, W., Li, F., Liu, M., Lv, B.: On a nonlocal problem for a confined plasma in a Tokamak. Appl. Math. 58, 609–642 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zou, W., Li, F., Liu, M., Lv, B.: Existence of solutions for a nonlocal problem arising in plasma physics. J. Differ. Equ. 256, 1653–1682 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenţiu D. Rădulescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrouzi, G.A., Mirzapour, M. & Rădulescu, V.D. The variational analysis of a nonlinear anisotropic problem with no-flux boundary condition. RACSAM 109, 581–595 (2015). https://doi.org/10.1007/s13398-014-0202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-014-0202-6

Keywords

Mathematics Subject Classification

Navigation