On a nonlocal discrete diffusion system modeling life tables

Original Paper

DOI: 10.1007/s13398-013-0153-3

Cite this article as:
Morillas, F. & Valero, J. RACSAM (2014) 108: 935. doi:10.1007/s13398-013-0153-3
  • 57 Downloads

Abstract

In this paper we study a system of ordinary differential equations with non-local discrete diffusion, which can be considered as a spatial discretization of a non-local reaction-diffusion equation. We prove several properties of solutions concerning comparison, stability, symmetry or the conservation of mass. We propose that this model can be appropriate to modeling dynamical life tables in actuarial or demographic sciences. We show that it allows to improve some indicators of goodness and smoothness when comparing with classical techniques.

Keywords

Lattice dynamical systems Ordinary differential equations  Discrete nonlocal diffusion problems 

Mathematics Subject Classification (2000)

34A12 34A33 34A35 34D05 34D20 34D23 

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Departament d’Economia Aplicada, Facultat d’EconomiaUniversitat de ValènciaValenciaSpain
  2. 2.Centro de Investigación OperativaUniversidad Miguel Hernández de ElcheElcheSpain

Personalised recommendations