On a nonlocal discrete diffusion system modeling life tables

Original Paper
  • 60 Downloads

Abstract

In this paper we study a system of ordinary differential equations with non-local discrete diffusion, which can be considered as a spatial discretization of a non-local reaction-diffusion equation. We prove several properties of solutions concerning comparison, stability, symmetry or the conservation of mass. We propose that this model can be appropriate to modeling dynamical life tables in actuarial or demographic sciences. We show that it allows to improve some indicators of goodness and smoothness when comparing with classical techniques.

Keywords

Lattice dynamical systems Ordinary differential equations  Discrete nonlocal diffusion problems 

Mathematics Subject Classification (2000)

34A12 34A33 34A35 34D05 34D20 34D23 

References

  1. 1.
    Cortazar, C., Elgueta, M., Rossi, J.D.: Nonlocal diffusion problems that approximate the heat equations with Dirichlet boundary conditions. Israel J. Math. 170, 53–60 (2009)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.: A nonlocal p-Laplacian evolution equation with Neumann boundary conditions. J. Math. Pues Appl. 90, 201–227 (2008)MATHGoogle Scholar
  3. 3.
    Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.: The Neumann problem for nonlocal nonlinear diffusion equations. J. Evol. Equ. 8, 189–215 (2008)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Pérez-Llanos, M., Rossi, J.D.: Numerical approximations for a nonlocal evolution equations. SIAM J. Numer. Anal. 49, 2103–2123 (2012)CrossRefGoogle Scholar
  5. 5.
    Amigó, J.M., Giménez, A., Morillas, F., Valero, J.: Attractors for a lattice dynamical system generated by non-newtonian fluids modelling suspensions. Int. J. Bifur. Chaos 20, 2681–2700 (2010)MATHCrossRefGoogle Scholar
  6. 6.
    Benjamin, B., Pollard, J.H.: The analysis of mortality and other actuarial statistics. Heineman (published by the Institute of Actuaries and the Faculty of Actuaries), London (1980)Google Scholar
  7. 7.
    Instituto Nacional de Estadística (España). Proyección de la Población de España a Corto Plazo (2012–2022) [en línea]. Madrid: INE. http://www.ine.es/metodologia/t20/t20269_m2012.pdf [Consulta: 23 de julio de 2013]
  8. 8.
    Ayuso, M., Corrales Herrero, H., Guillén Estany, M., Pérez Marín, A. M., Rojo García, J. L.: Estadística Actuarial Vida, UBe, Barcelona (2007)Google Scholar
  9. 9.
    Baeza Sampere, I., Morillas Jurado, F. G.: Using wavelet to non-parametric graduation of mortality rates. Anales del Instituto de Actuarios Españoles (Epoca 3a), 17, 135–164 (2011)Google Scholar
  10. 10.
    Debon Aucejo A.: Graduación de tablas de mortalidad. Aplicaciones actuariales, Tesis Doctoral, Universitat de València, I.S.B.N.: 84–370-5893-7 (2003)Google Scholar
  11. 11.
    Peris Manguillot, A., Martínez Giménez, Ródenas Escribá, F.: Tratamiento de señales digitales mediante wavelets y su uso con Matlab, Editorial Club Universitario, Valencia (2004).Google Scholar
  12. 12.
    London, D.: Graduation: The Revision of estimates. ACTEX Publications, Connecticut (1985)Google Scholar
  13. 13.
    Forfar, D.O., McCutcheon, J.J., Wilkie, A.D.: On graduation by mathematical formula. J. Inst. Actuaries [JIA] 115, 1–149 (1988)CrossRefGoogle Scholar
  14. 14.
    Instituto Nacional de Estadística (España). INEBase. Fenómenos demográficos [en línea]. Madrid: INE. http://www.ine.es/inebmenu/mnu_dinamicapob.htm [Consulta: 23 de julio de 2013]

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Departament d’Economia Aplicada, Facultat d’EconomiaUniversitat de ValènciaValenciaSpain
  2. 2.Centro de Investigación OperativaUniversidad Miguel Hernández de ElcheElcheSpain

Personalised recommendations