Skip to main content
Log in

On the orbifold structure of the moduli space of Riemann surfaces of genera four and five

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

The moduli space \(\mathcal M _{g}\), of compact Riemann surfaces of genus \(g\) has orbifold structure since \(\mathcal M _{g}\) is the quotient space of the Tiechmüller space by the action of the mapping class group. Using uniformization of Riemann surfaces by Fuchsian groups and the equisymmetric stratification of the branch locus of the moduli space we find the orbifold structure of the moduli spaces of Riemann surfaces of genera 4 and 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartolini, G., Costa, A.F., Izquierdo, M., Porto, A.M.: On the connectedness of the branch locus of the moduli space of Riemann surfaces. Rev. R. Acad. Cien. Serie A. Mat. 104, 81–86 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bartolini, G., Izquierdo, M.: On the connectedness of the branch locus of the moduli space of Riemann surfaces of low genus. Proc. Am. Math. Soc. 140(1), 35–45 (2012). doi:10.1090/S0002-9939-2011-10881-5

    Article  MATH  MathSciNet  Google Scholar 

  3. Bogopolski, O.V.: Classification of actions of finite groups on orientable surface of genus four. Sib. Adv. Math. 7, 9–38 (1997)

    Google Scholar 

  4. Breuer, T.: Characters and automorphism groups of compact Riemann surfaces. In: London Mathematical Society Lecture Note Series, vol. 280. Cambridge University Press, Cambridge (2000)

  5. Broughton, A.: The equisymmetric stratification of the moduli space and the Krull dimension of mapping class groups. Topol. Appl. 37, 101–113 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Broughton, A.: Classifying finite group actions on surfaces of low genus. J. Pure Appl. Algebra 69, 233–270 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Broughton, A., Wootton, A.: Finite abelian subgroups of the mapping class group. Algebra Geom. Topol. 7, 1651–1697 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bujalance, E., Cirre, F.J., Conder, M.D.E.: On extendability of group actions on compact Riemann surfaces. Trans. Am. Math. Soc. 355, 1537–1557 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bujalance, E., Cirre, F.J., Gamboa, J.M., Gromadzki, G.: On symmetries of compact Riemann surfaces with cyclic groups of automorphisms. J. Algebra 301, 82–95 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bujalance, E., Cirre, F.J., Gromadzki, G.: Groups of automorphisms of cyclic trigonal Riemann surfaces. J. Algebra 319 (2009)

  11. Bujalance, E., Costa, A.F., Izquierdo, M.: A note on isolated points in the branch locus of the moduli space of compact Riemann surfaces. Ann. Acad. Sci. Fenn. Math. 23, 25–32 (1998)

    MATH  MathSciNet  Google Scholar 

  12. Costa, A.F., Izquierdo, M.: On the connectedness of the branch locus of the moduli space of Riemann surfaces of genus 4. Glasg. Math. J. 52, 401–408 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Costa, A.F., Izquierdo, M.: Equisymmetric strata of the singular locus of the moduli space of Riemann surfaces of genus 4. In: Gardiner, F.P., Gonzalez-Diez, G., Kourouniotis, C. (eds.) London Mathematical Society Lecture Note Series, vol. 368, pp. 130–148. Cambridge University Press, Cambridge (2010)

  14. Costa, A.F., Izquierdo, M.: Maximal order of automorphisms of trigonal Riemann surfaces. J. Algebra 323, 27–31 (2010). doi:10.1016/j.algebra.2009.09.041

    Article  MATH  MathSciNet  Google Scholar 

  15. Costa, A.F., Izquierdo, M., Ying, D.: On Riemann surfaces with non-unique cyclic trigonal morphisms. Manuscripta Mathematica 118, 443–453 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Costa, A.F., Parlier, H.: Applications of a theorem of Singerman about Fuchsian groups. Arch. Math. 91, 536–543 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Costa, A.F., Porto, A.M.: On some Galois invariants of branched coverings. R. Math. Acad. Sci. Paris 334, 899–902 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. GAP Group: GAP-groups, algorithms and programming, version 4.4.7 (2006)

  19. Gromadzki, G., Kozlowska-Walania, E.: On the real nerve of the moduli space of complex algebraic curves of even genus. Ill. J. Math. 55, 479–494 (2012)

    MathSciNet  Google Scholar 

  20. Harvey, W.: On branch loci in Teichmüller space. Trans. Am. Math. Soc. 153, 387–399 (1971)

    MATH  Google Scholar 

  21. Izquierdo, M., Ying, D.: Equisymmetric strata of the moduli space of cyclic trigonal Riemann surfaces of genus 4. Glasg. Math. J. 51 (2009)

  22. Kimura, H.: Classification of automorphism groups, up to topological equivalencce, of compact Riemann surfaces of genus 4. J. Algebra 264, 26–54 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kimura, H., Kuribayashi, A.: Automorphism groups of compact Riemann surfaces of genus five. J. Algebra 134, 80–103 (1990)

    Google Scholar 

  24. Kulkarni, R.S.: Isolated points in the branch locus of the moduli space of compact Riemann surfaces. Ann. Acad. Sci. Fen. Ser. A I Math. 16, 71–81 (1991)

    MATH  Google Scholar 

  25. Magaard, K., Shaska, T., Shpectorov, S., Völklein, H.: The locus of curves with prescribed automorphism group. Communications in arithmetic fundamental groups (Kyoto, 1999/2001). Sūrikaisekikenkyūsho Kōkyūroku 1267, 112–141 (2002)

  26. Nag, S.: The Complex Theory of Teichmüller Spaces. Wiley-Interscience Publication, New York (1988)

    MATH  Google Scholar 

  27. Singerman, D.: Subgroups of Fuchsian groups and finite permutation groups. Bull. Lond. Math. Soc. 2, 319–323 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  28. Singerman, D.: Finitely maximal Fuchsian groups. J. Lond. Math. Soc. 6, 29–38 (1972)

    Google Scholar 

  29. Smith, P.A.: Abelian actions on 2-manifolds. Mich. Math. J. 14, 257–275 (1967)

    Google Scholar 

  30. Weaver, A.: Stratifying the space of moduli. Teichmüller theory and moduli problem, pp. 597–618. In: Ramanujan Mathematical Society Lecture Notes Series, vol. 10. Ramanujan Mathematical Society, Mysore (2010)

  31. Weaver, A.: Hyperelliptic surfaces and their moduli. Geom. Dedicata 103, 69–87 (2004)

    Google Scholar 

Download references

Acknowledgments

A. F. Costa is partially supported by MTM2011-23092. M. Izquierdo is partially supported by the Swedish Research Council (VR). The results on genus \(5\) are part of Bartolini’s Liccentiate Thesis. The authors are grateful to the referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio F. Costa.

Appendix: GAP-codes

Appendix: GAP-codes

Some GAP-codes to find and classify actions of groups on Riemann surfaces, beginning with a code to find admissible signatures.

figure a

Next one finds and classifies group actions with signature \((0;m_{1},\dots ,m_{k})\). A slightly modified code is used when \(g=1\).

figure b
figure c

To calculate the signatures of subgroups of Fuchsian groups:

figure d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartolini, G., Costa, A.F. & Izquierdo, M. On the orbifold structure of the moduli space of Riemann surfaces of genera four and five. RACSAM 108, 769–793 (2014). https://doi.org/10.1007/s13398-013-0140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-013-0140-8

Keywords

Mathematics Subject Classificcation

Navigation