Skip to main content
Log in

Abstract

We give a definition of Newton non-degeneracy independent of the system of generators defining the variety. This definition extends the notion of Newton non-degeneracy to varieties that are not necessarily complete intersection. As in the previous definition of non-degeneracy for complete intersection varieties, it is shown that the varieties satisfying our definition can be resolved with a toric modification. Using tools of both toric and tropical geometry we describe the toric modification in terms of the Gröbner fan of the ideal defining the variety. The first part of the paper is devoted to introducing the classical concepts and the proof for the hypersurface case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Since \(G_\sigma \) is a Gröbner basis, it is in particular a normalised standard basis and the equality holds always (see for example [15, 16] or, for the analytic case [2]).

References

  1. Aroca, F., Ilardi, G., López de Medrano, L.: Puiseux power series solutions for systems of equations. Int. J. Math. 21(11), 1439–1459 (2010)

    Article  MATH  Google Scholar 

  2. Aroca, J.M., Heisuke, H., Vicente, J.L.: Desingularization Theorems. Memorias de Matemática del Instituto “Jorge Juan” (Mathematical Memoirs of the Jorge Juan Institute), vol. 30. Consejo Superior de Investigaciones Científicas, Madrid (1977)

  3. Bieri, R., Groves, J.R.J.: The geometry of the set of characters induced by valuations. J. Reine Angew. Math. 347, 168–195 (1984)

    MathSciNet  MATH  Google Scholar 

  4. Bivià-Ausina, C.: Mixed Newton numbers and isolated complete intersection singularities. Proc. Lond. Math. Soc. (3) 94(3), 749–771 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braun, G., Némethi, A.: Invariants of Newton non-degenerate surface singularities. Compos. Math. 143(4), 1003–1036 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.1.0—a computer algebra system for polynomial computations (2009). http://www.singular.uni-kl.de

  7. Ehlers, F.: Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten. Math. Ann. 218(2), 127–156 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fukuda, K., Jensen, A.N., Thomas, R.R.: Computing Gröbner fans. Math. Comput. 76(260), 2189–2212 (2007) (electronic)

  9. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993). The William H. Roever Lectures in Geometry

  10. Gathmann, A.: Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein. 108(1), 3–32 (2006). arXiv:math.AG/0601322v1

  11. Gómez-Morales, M.: Resolución tórica de ideales Newton no degenerados. Master thesis, Universidad Nacional Autónoma de México (2009)

  12. Hacking, P.: Homology of tropical varieties. Collect. Math. 59(3), 263–273 (2008)

    Google Scholar 

  13. Hacking, P., Keel, S., Tevelev, J.: Stable pair, tropical, and log canonical compact moduli of del Pezzo surfaces. Invent. Math. 178(1), 173–228 (2009)

    Google Scholar 

  14. Helm, D., Katz, E.: Monodromy filtrations and the topology of tropical varieties. Canad. J. Math. (to appear)

  15. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero: I. Ann. Math. (2) 79, 109–203 (1964)

    Google Scholar 

  16. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero: II. Ann. Math. (2) 79, 205–326 (1964)

    Google Scholar 

  17. Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry. Oberwolfach Seminars, vol. 35. Birkhäuser Verlag, Basel (2007)

    Google Scholar 

  18. Jensen, A.N.: Gfan, a software system for Gröbner fans and tropical varieties (2009). http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html

  19. Khovanskii, A.G.: Newton polyhedra and the genus of complete intersections. Funktsional. Anal. i Prilozhen. 12(1), 51–61 (1977)

    MathSciNet  Google Scholar 

  20. Khovanskii, A.G.: Newton polyhedra, and toroidal varieties. Funkcional. Anal. i Priložen. 11(4), 56–64, 96 (1977)

    Google Scholar 

  21. Kouchnirenko, A.G.: Poly\(\grave{\rm e}\)dres de Newton et nombres de Milnor. Invent. Math. 32(1), 1–31 (1976)

  22. Lê, D.T., Tosun, M.: Combinatorics of rational singularities. Comment. Math. Helv. 79(3), 582–604 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Luxton, M., Qu, Z.: Some results on tropical compactifications. Trans. Amer. Math. Soc. 363, 4853–4876 (2011)

    Google Scholar 

  24. Merle, M.: Polyedre de Newton, eventail et desingularisation (D’apres A. N. Varchenko). Semin. sur les singularites des surfaces, Cent. Math. Ec. Polytech., Palaiseau 1976–77. Lect. Notes Math. 777, 289–294 (1980)

    Article  Google Scholar 

  25. Mora, T., Robbiano, L.: The Gröbner fan of an ideal. J. Symb. Comput. 6, 183–208 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Oka, M.: Principal zeta-function of nondegenerate complete intersection singularity. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37(1), 11–32 (1990)

    Google Scholar 

  27. Oka, M.: Non-Degenerate Complete Intersection Singularity. Actualités Mathématiques (Current Mathematical Topics). Hermann, Paris (1997)

  28. Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry. Idempotent Mathematics and Mathematical Physics. Contemporary Mathematics, vol. 377, pp. 289–317. American Mathematical Society, Providence (2005). arXiv:math.AG/0306366

  29. Saia, M.J., Zuniga-Galindo, W.A.: Local zeta function for curves, non-degeneracy conditions and Newton polygons. Trans. Am. Math. Soc. 357(1), 59–88 (2005) (electronic)

    Google Scholar 

  30. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. American Mathematical Society, Providence (1996)

    Google Scholar 

  31. Sturmfels, B., Tevelev, J.: Elimination theory for tropical varieties. Math. Res. Lett. 15(3), 543–562 (2008)

    Google Scholar 

  32. Teissier, B.: Monomial Ideals, Binomial Ideals, Polynomial Ideals. Trends in Commutative Algebra. Math. Sci. Res. Inst. Publ., vol. 51, pp. 211–246. Cambridge University Press, Cambridge (2004)

  33. Tevelev, J.: Compactifications of subvarieties of tori. Amer. J. Math. 129(4), 1087–1104 (2007)

    Google Scholar 

  34. Tjurina, G.N.: Absolute isolation of rational singularities, and triple rational points. Funkcional. Anal. i Priložen. 2(4), 70–81 (1968)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

M. Gómez-Morales would like to thank Carles Bibia-Ausina and Dmitry Kerner, for clarifying discussions on the subject and, to Meral Tosun, for the example in Sect. 11. K. Shabbir would like to thank A. Jensen for answering several questions by e-mail. In particular for the proof of Proposition 10.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuensanta Aroca.

Additional information

To Professor Heisuke Hironaka on the occasion of his 80th birthday

Research partially supported by PAPIIT-UNAM, CONACYT (Mexico) Grants 55084, 162340 and 117110. K. Shabbir was partially supported by CONACYT (Mexico) and TWAS (Italy) Grant FR 3240223595. He wants to thank these institutions for their support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aroca, F., Gómez-Morales, M. & Shabbir, K. Torical modification of Newton non-degenerate ideals. RACSAM 107, 221–239 (2013). https://doi.org/10.1007/s13398-012-0100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-012-0100-8

Keywords

Mathematics Subject Classification

Navigation