Abstract
Let A, B be nonempty subsets of a metric space (X, d) and T : A → 2B be a multivalued non-self-mapping. The purpose of this paper is to establish some theorems on the existence of a point \({x^*\in A}\) , called best proximity point, which satisfies \({{\rm inf}\{d(x^*,y):y\in Tx^*\}=dist(A,B).}\) This will be done for contraction multivalued non-self-mappings in metric spaces, as well as for nonexpansive multivalued non-self-mappings in Banach spaces having appropriate geometric property.
This is a preview of subscription content, access via your institution.
References
Abbas, M., Nazir, T., Romaguera, S.: Fixed point results for generalized cyclic contraction mappings in partial metric spaces. RACSAM (2012). doi:10.1007/s13398-011-0051-5
Abkar A., Gabeleh M.: Generalized cyclic contractions in partially ordered metric spaces. Optim. Lett. (2012). doi:10.1007/s11590-011-0379-y
Abkar A., Gabeleh M.: Best proximity points for asymptotic cyclic contraction mappings. Nonlinear Anal. 74, 7261–7268 (2011)
Abkar A., Gabeleh M.: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153, 298–305 (2012)
Al-Thagafi M.A., Shahzad N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70, 3665–3671 (2009)
Derafshpour M., Rezapour S., Shahzad N.: Best proximity points of cyclic \({\varphi}\) -contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. 37, 193–202 (2011)
Di Bari C., Suzuki T., Vetro C.: Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Anal. 69, 3790–3794 (2008)
Espinola R.: A new approach to relatively nonexpansive mappings. Proc. Amer. Math. Soc. 136, 1987–1996 (2008)
Fan K.: Extensions of two fixed point theorems of F. E. Browder. Math. Z 122, 234–240 (1969)
Nadler S.B. Jr: Multivalued contraction mappinsg. Pac. J. Math. 30, 475–488 (1969)
Sankar Raj V.: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804–4808 (2011)
Suzuki T., Kikkawa M., Vetro C.: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918–2926 (2009)
Wlodarczyk K., Plebaniak A., Banach A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70, 3332–3342 (2009)
Wlodarczyk K., Plebaniak A., Banach A.: Erratum to: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 71, 3583–3586 (2009)
Wlodarczyk K., Plebaniak R., Obczynski C.: Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794–805 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Abkar, A., Gabeleh, M. The existence of best proximity points for multivalued non-self-mappings. RACSAM 107, 319–325 (2013). https://doi.org/10.1007/s13398-012-0074-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13398-012-0074-6
Keywords
- Contraction mapping
- Nonexpansive mapping
- Best proximity point
- Fixed point
Mathematics Subject Classification (2000)
- 47H10
- 47H09