Skip to main content

The existence of best proximity points for multivalued non-self-mappings

Abstract

Let A, B be nonempty subsets of a metric space (X, d) and T : A → 2B be a multivalued non-self-mapping. The purpose of this paper is to establish some theorems on the existence of a point \({x^*\in A}\) , called best proximity point, which satisfies \({{\rm inf}\{d(x^*,y):y\in Tx^*\}=dist(A,B).}\) This will be done for contraction multivalued non-self-mappings in metric spaces, as well as for nonexpansive multivalued non-self-mappings in Banach spaces having appropriate geometric property.

This is a preview of subscription content, access via your institution.

References

  1. Abbas, M., Nazir, T., Romaguera, S.: Fixed point results for generalized cyclic contraction mappings in partial metric spaces. RACSAM (2012). doi:10.1007/s13398-011-0051-5

  2. Abkar A., Gabeleh M.: Generalized cyclic contractions in partially ordered metric spaces. Optim. Lett. (2012). doi:10.1007/s11590-011-0379-y

  3. Abkar A., Gabeleh M.: Best proximity points for asymptotic cyclic contraction mappings. Nonlinear Anal. 74, 7261–7268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abkar A., Gabeleh M.: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153, 298–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Al-Thagafi M.A., Shahzad N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70, 3665–3671 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Derafshpour M., Rezapour S., Shahzad N.: Best proximity points of cyclic \({\varphi}\) -contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. 37, 193–202 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Di Bari C., Suzuki T., Vetro C.: Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Anal. 69, 3790–3794 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Espinola R.: A new approach to relatively nonexpansive mappings. Proc. Amer. Math. Soc. 136, 1987–1996 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan K.: Extensions of two fixed point theorems of F. E. Browder. Math. Z 122, 234–240 (1969)

    Article  Google Scholar 

  10. Nadler S.B. Jr: Multivalued contraction mappinsg. Pac. J. Math. 30, 475–488 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sankar Raj V.: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804–4808 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Suzuki T., Kikkawa M., Vetro C.: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918–2926 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wlodarczyk K., Plebaniak A., Banach A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70, 3332–3342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wlodarczyk K., Plebaniak A., Banach A.: Erratum to: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 71, 3583–3586 (2009)

    MathSciNet  Google Scholar 

  15. Wlodarczyk K., Plebaniak R., Obczynski C.: Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794–805 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gabeleh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abkar, A., Gabeleh, M. The existence of best proximity points for multivalued non-self-mappings. RACSAM 107, 319–325 (2013). https://doi.org/10.1007/s13398-012-0074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-012-0074-6

Keywords

  • Contraction mapping
  • Nonexpansive mapping
  • Best proximity point
  • Fixed point

Mathematics Subject Classification (2000)

  • 47H10
  • 47H09