Advertisement

On the existence of solutions in systems of linear Diophantine equations

  • Antonio Hernando
  • Luis de Ledesma
Original Paper

Abstract

The question about the existence of solutions in a family of systems of Diophantine linear equations can be always answered by means of a set of functions called ‘Testers’. In this paper, we will propose a procedure to obtain this set of ‘Testers’ (named complete set of testers) which characterizes each family of systems of Diophantine equations.

Keywords

Number theory Diophantine equations Smith normal form 

Mathematics Subject Classification (2000)

11D04 11D72 

References

  1. 1.
    Borosh, I., Treybig, L.B.: Bounds on positive integral solutions of linear diophantine equations. In: Proceedings of the American Mathematical Society, vol. 55, pp. 299–304 (1976)Google Scholar
  2. 2.
    Boudet, A. Contejean, E., Devie, H.: A new AC Unification algorithm with an algorithm for solving systems of Diophantine equations. In: Proceedings of the 5th IEEE Conference on Logic and Computer Science, pp. 289–299 (1990)Google Scholar
  3. 3.
    Chou T.-W.J., Collins G.E.: Algorithms for the solution of systems of linear Diophantine equations. SIAM J. Comput. 11, 687–708 (1982)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Clausen M., Fortenbacher A.: Efficient solution of linear Diophantine equations. J. Symbol. Comput. 8, 201–216 (1989)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Contejean E., Devie H.: An efficient incremental algorithm for solving systems of linear Diophantine equations. Inf. Comput 113(1), 143–172 (1994)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Fang, X.G., Havas,G.: On the worst-case complexity of integer gausian elimination. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation ISSAC, pp. 28–31. ACM Press, New York (1997)Google Scholar
  7. 7.
    Filgueiras M., Tomás A.P.: A fast method for finding the basis of non-negative solutions to a linear Diophantine equation. J Symbol. Comput. 19, 507–562 (1995)MATHCrossRefGoogle Scholar
  8. 8.
    Giesbrecht, M.: Fast Computation of the Smith Normal Form of an Integer Matrix. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC95, Montreal, Canada, pp. 110–118. ACM Press, New York, 10–12 July 1995Google Scholar
  9. 9.
    Hernando A., De Ledesma L., Laita L.M.: Showing the non-existence of solutions in systems of linear Diophantine equations. Math. Compute. Simul. 79, 3211–3220 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hernando, A.: New methods for proving the impossibility to solve problems through reduction of problem spaces. Ann. Math. Artif. Intell. (2009)Google Scholar
  11. 11.
    Huet G.: An algorithm to generate the basis of solutions to homogeneous linear Diophantine equations. Inf. Process. Lett. 7(3), 144–147 (1978)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Jäger G., Wagner C.: Efficient parallelizations of Hermite and Smith normal form algorithms. J. Parallel Comput. 35(6), 345–357 (2009)CrossRefGoogle Scholar
  13. 13.
    Lazebnik F.: On Systems of linear Diophantine equations. Math. Mag. 69, 261–266 (1996)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Pottier L.: Minimal solutions of linear diophantine solutions: bounds and algorithms. Lect. Notes Comput. Sci. 488, 162–173 (1986)MathSciNetGoogle Scholar
  15. 15.
    Smith H.J.S.: On systems of linear indeterminate equations and congruences. Philos. Trans. R. Soc. Lond. 151, 293–326 (1861)CrossRefGoogle Scholar
  16. 16.
    Storjohan, A.: Near optimal algorithms for computing Smith normal forms of integer matrices. In: Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, ISSAC96, 1996, pp. 267–274Google Scholar
  17. 17.
    Tomás A.P., Filgueiras M.: An algorithm for solving systems of linear Diophantine equations in naturals. Lect. Notes Comput. Sci. 1323, 3–84 (1997)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Departamento de Sistemas Informáticos, Escuela Universitaria de InformáticaUniversidad Politécnica de MadridMadridSpain
  2. 2.Depto de Inteligencia Artificial, Facultad de InformáticaUniversidad Politécnica de MadridBoadilla del Monte, MadridSpain

Personalised recommendations