Skip to main content
Log in

Weighted PLB-spaces of continuous functions arising as tensor products of a Fréchet and a DF-space

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

Countable projective limits of countable inductive limits, so-called PLB-spaces, of weighted Banach spaces of continuous functions have recently been investigated by Agethen et al., who analyzed locally convex properties in terms of the defining double sequence of weights. We complement their results by considering a defining sequence which is the product of two single sequences. By associating these two sequences with a weighted Fréchet, resp. LB-space of continuous functions or with two weighted Fréchet spaces (by taking the reciprocal of one of the sequences) we derive a representation of the PLB-space as the tensor product of a Fréchet and a DF-space and exhibit a connection between the invariants (DN) and (Ω) for Fréchet spaces and locally convex properties of the PLB-space resp. of the forementioned tensor product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agethen, S.: Spaces of continuous and holomorphic functions with growth conditions, Dissertation Universität Paderborn (2004)

  2. Agethen S., Bierstedt K.D., Bonet J.: Projective limits of weighted (LB)-spaces of continuous functions. Arch. Math. (Basel) 92(5), 384–398 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Bierstedt K.D.: Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. I. J. Reine Angew. Math. 259, 186–210 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bierstedt K.D.: Injektive Tensorprodukte und Slice-Produkte gewichteter Räume stetiger Funktionen. J. Reine Angew. Math. 266, 121–131 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bierstedt, K.D.: An introduction to locally convex inductive limits, functional analysis and its applications (Nice, 1986) 35–133. In: ICPAM Lecture Notes, pp. 35–133. World Scientific Publishing, Singapore (1988)

  6. Bierstedt K.D., Bonet J.: Weighted (LF)-spaces of continuous functions. Math. Nachr. 165, 25–48 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bierstedt, K.D., Meise, R., Summers, W.H.: Köthe sets and Köthe sequence spaces. In: Functional analysis, holomorphy and approximation theory (Rio de Janeiro, 1980), vol. 71, pp. 27–91. North-Holland Mathematics Studies, Amsterdam (1982)

  8. Bierstedt K.D., Meise R., Summers W.H.: A projective description of weighted inductive limits. Trans. Am. Math. Soc. 272(1), 107–160 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonet J., Domański P.: Parameter dependence of solutions of partial differential equations in spaces of real analytic functions. Proc. Am. Math. Soc. 129(2), 495–503 (2001)

    Article  MATH  Google Scholar 

  10. Bonet J., Domański P.: Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences. J. Funct. Anal. 230(2), 329–381 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonet J., Domański P.: The stucture of spaces of quasianalytic functions of Romieu type. Arch. Math. (Basel) 89(5), 430–441 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Bonet J., Domański P.: The splitting of exact sequences of PLS-spaces and smooth dependence of solutions of linear partial differential equations. Adv. Math. 217(2), 561–585 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Braun R., Vogt D.: A sufficient condition for Proj\({\,^1\fancyscript{X}=0}\) . Michigan Math. J. 44(1), 149–156 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Domański, P.: Classical PLS-spaces: spaces of distributions, real analytic functions and their relatives, Orlicz centenary volume, vol. 64. pp. 51–70. Polish Academy of Sciences, Warsaw (2004)

  15. Domański P.: Real analytic parameter dependence of solutions of differential equations. Rev. Mat. Iberoamericana 26, 174–238 (2010)

    Google Scholar 

  16. Frerick L., Wengenroth J.: A sufficient condition for vanishing of the derived projective limit functor. Arch. Math. (Basel) 67(4), 296–301 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Grothendieck, A.: Produits Tensoriels Topologiques et Espaces Nuclé aires, Mem. Am. Math. Soc. 16 (1955)

  18. Hollstein R.: Inductive limits and \({\varepsilon}\) -tensor products. J. Reine Angew. Math. 319, 38–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jarchow H.: Locally Convex Spaces. B. G. Teubner, Stuttgart (1981)

    MATH  Google Scholar 

  20. Köthe G.: Topological vector spaces. I, Grundlehren der math. Wiss, vol. 159. Springer, New York (1969)

    Google Scholar 

  21. Köthe G.: Topological vector spaces. II, Grundlehren der math. Wiss, vol. 237. Springer, New York (1979)

    Google Scholar 

  22. Meise R., Vogt D.: Introduction to functional analysis. Oxford Graduate Texts in Math, vol. 2. The Clarendon Press/Oxford University Press, New York (1997)

    Google Scholar 

  23. Palamodov, V.P.: The projective limit functor in the category of topological linear spaces, Mat. Sb. 75, 567–603 (in Russian), English transl. Math. USSR Sbornik 17, 189–315 (1968)

  24. Palamodov, V.P.: Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk 26(1), 3–66 (in Russian), English transl., Russian Math. Surveys 26(1), 1–64 (1971)

  25. Pérez Carreras P., Bonet J.: Barrelled locally convex spaces. vol. 113. North-Holland Mathematics Studies, Amsterdam (1987)

    Google Scholar 

  26. Piszczek K.: On a property of PLS-spaces inherited by their tensor products. Bull. Belg. Math. Soc. Simon Stevin 17, 155–170 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Retakh V.S.: Subspaces of a countable inductive limit (English transl.). Soviet Math. Dokl. 11, 1384–1386 (1971)

    Google Scholar 

  28. Varol O.: A generalization of a theorem of A. Grothendieck. Math. Nachr. 280(3), 313–325 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vogt D.: Charakterisierung der Unterräume von s. Math. Z. 155(2), 109–117 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vogt D.: Frécheträume zwischen denen jede stetige lineare Abbildung beschränkt ist. J. Reine Angew. Math. 345, 182–200 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vogt, D.: Lectures on projective spectra of (DF)-spaces. In: Seminar lectures, Wuppertal (1987)

  32. Vogt D.: On the functors Ext1(E,F) for Fréchet spaces. Studia Math. 85(2), 163–197 (1987)

    MathSciNet  Google Scholar 

  33. Vogt, D.: Topics on projective spectra of (LB)-spaces, Adv. in the Theory of Fréchet spaces (Istanbul, 1988), NATO Adv. Sci. Inst. Ser. C 287, 11–27 (1989)

  34. Vogt, D.: Regularity properties of (LF)-spaces, progress in functional analysis. In: Proc. Int. Meet. Occas. 60th Birthd. M. Valdivia, Peñscola/Spain, vol. 170, pp. 57–84. North-Holland Mathematics Studies (1992)

  35. Vogt D., Wagner M.-J.: Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau. Studia Math. 67(3), 225–240 (1980)

    MathSciNet  MATH  Google Scholar 

  36. Wegner, S.-A.: Inductive kernels and projective hulls for weighted (PLB)- and (LF)-spaces of continuous functions, Diplomarbeit Universität Paderborn (2007)

  37. Wegner, S.-A.: Projective limits of weighted (LB)-spaces of holomorphic functions, PhD-thesis, Universidad Politécnica de Valencia (2010)

  38. Wengenroth, J.: Derived functors in functional analysis. In: Lecture Notes in Mathematics, vol. 1810. Springer, Berlin (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven-Ake Wegner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegner, SA. Weighted PLB-spaces of continuous functions arising as tensor products of a Fréchet and a DF-space. RACSAM 105, 85–96 (2011). https://doi.org/10.1007/s13398-011-0001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-011-0001-2

Keywords

Mathematics Subject Classification (2000)

Navigation