Skip to main content
Log in

Identifying routines in the discourse of undergraduate students when defining

  • Original Article
  • Published:
Mathematics Education Research Journal Aims and scope Submit manuscript

Abstract

In this paper, we study how undergraduate students define 3D geometrical solids. With this aim, we have identified the routines that are present in the discourse of the students when describing and defining these solids. These routines are one of the properties that characterise the mathematical discourse in the theory of commognition (Sfard 2008). Our results show three different types of routines. The first type is related to the process of describing the solids, the second one to the process of defining the solids and the rest of the routines have a transversal nature. All of them together give us a global vision of the mathematical practice of defining of these undergraduate students. For instance, it seems that some of these students do not have a clear idea of what a definition is. Moreover, there are also differences between the discourse of students when defining 2D figures and the discourse of students when defining 3D solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Biza, I. (2017). “Points”, “slopes” and “derivatives”: substantiations of narratives about tangent line in university mathematics students’ discourses. In T. Dooley & G. Gueudet (Eds.), Proceedings of the 9th Conference of European Research in Mathematics Education (pp. 1993–2000). Dublin: DCU Institute of Education and ERME.

    Google Scholar 

  • Biza, I., Giraldo, V., Hochmuth, R., Khakbaz, A. S., & Rasmussen, C. (2016). Research on teaching and learning mathematics at the tertiary level: state-of-the-art and looking ahead. Cham: Springer.

    Book  Google Scholar 

  • Borasi, R. (1992). Learning mathematics through inquiry. Portsmouth, NH: Heinemann Educational Books, Ins.

    Google Scholar 

  • Caspi, S., & Sfard, A. (2012). Spontaneous meta-arithmetic as a first step toward school algebra. International Journal of Educational Research, 51–52, 45–65.

    Article  Google Scholar 

  • Copi, I. M. (1972). Introduction to logic. New York, NY: Macmillan Publishing Co., Inc..

    Google Scholar 

  • De Villiers, M. (1998). To teach definitions in geometry or teach to define? In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 248–255). Stellenbosch: University of Stellenbosch.

    Google Scholar 

  • Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 25–41). Dordrecht: Kluwer.

    Google Scholar 

  • Emre-Akdoğan, E., Güçler, B., & Argün, Z. (2018). The development of two high school students’ discourses on geometric translation in relation to the teacher’s discourse in the classroom. EURASIA Journal of Mathematics, Science and Technology Education, 14(5), 1605–1619.

    Article  Google Scholar 

  • Escudero, I., Gavilán, J. M., & Sánchez-Matamoros, G. (2014). Una aproximación a los cambios en el discurso matemático generados en el proceso de definir [An approach to changes in the mathematical discourse generated in the process of defining]. Revista Latinoamericana de Investigación en Matemática Educativa, 17(1), 7–32.

    Article  Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel.

    Google Scholar 

  • Gavilán-Izquierdo, J. M., Martín-Molina, V., González-Regaña, A. J., Toscano, R., & Fernández-León, A. (in press). Cómo construyen definiciones matemáticas los estudiantes para maestro: una aproximación sociocultural [How preservice teachers construct mathematical definitions: a sociocultural approach]. In E. Badillo, N. Climent, C. Fernández, & M. T. González (Eds.), Investigación sobre el profesor de matemáticas: práctica de aula, conocimiento, competencia y desarrollo profesional (pp. 133–153). Salamanca: Ediciones Universidad de Salamanca.

  • Gavilán-Izquierdo, J. M., Sánchez-Matamoros, G., & Escudero, I. (2014). Aprender a definir en matemáticas: Estudio desde una perspectiva sociocultural [Learning to define in mathematics: study from a sociocultural approach]. Enseñanza de las Ciencias, 32(3), 529–550.

    Google Scholar 

  • Heyd-Metzuyanim, E., Morgan, C., Tang, S., Nachlieli, T., Sfard, A., Sinclair, N., & Tabach, M. (2013). Development of mathematical discourse: insights from “strong” discursive research. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 155–179). Kiel: PME.

    Google Scholar 

  • Inglis, M., & Alcock, L. (2012). Expert and novice approaches to reading mathematical proofs. Journal for Research in Mathematics Education, 43(4), 358–390.

    Article  Google Scholar 

  • Ioannou, M. (2018). Commognitive analysis of undergraduate mathematics students’ first encounter with the subgroup test. Mathematics Education Research Journal, 30(2), 117–142.

    Article  Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Lavie, I., Steiner, A., & Sfard, A. (2019). Routines we live by: from ritual to exploration. Educational Studies in Mathematics, 101(2), 153–176.

    Article  Google Scholar 

  • Lerman, S. (2001). Cultural, discursive psychology: a sociocultural approach to studying the teaching and learning of mathematics. Educational Studies in Mathematics, 46(1–3), 87–113.

  • Martín-Molina, V., González-Regaña, A. J., & Gavilán-Izquierdo, J. M. (2018a). Researching how professional mathematicians construct new mathematical definitions: a case study. International Journal of Mathematical Education in Science and Technology, 49(7), 1069–1082.

  • Martín-Molina, V., Toscano, R., González-Regaña, A., Fernández-León, A., & Gavilán-Izquierdo, J. M. (2018b). Analysis of the mathematical discourse of university students when describing and defining geometrical figures. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 355–362). Umeå: PME.

  • Nardi, E., Ryve, A., Stadler, E., & Viirman, O. (2014). Commognitive analyses of the learning and teaching of mathematics at university level: the case of discursive shifts in the study of Calculus. Research in Mathematics Education, 16(2), 182–198.

    Article  Google Scholar 

  • Ní Ríordáin, M., & Flanagan, E. (2019). Bilingual undergraduate students’ language use and meta-level developments relating to functions. Mathematics Education Research Journal, 1–22. https://doi.org/10.1007/s13394-019-00268-z.

  • Ouvrier-Buffet, C. (2011). A mathematical experience involving defining processes: in-action definitions and zero-definitions. Educational Studies in Mathematics, 76(2), 165–182.

    Article  Google Scholar 

  • Presmeg, N. (2016). Commognition as a lens for research. Educational Studies in Mathematics, 91(3), 423–430.

    Article  Google Scholar 

  • Rasmussen, C., Zandieh, M., King, K., & Teppo, A. (2005). Advancing mathematical activity: a practice-oriented view of advanced mathematical thinking. Mathematical thinking and learning, 7(1), 51–73.

    Article  Google Scholar 

  • Sánchez, V., & García, M. (2014). Socio-mathematical and mathematical norms related to definition in pre-service primary teachers’ discourse. Educational Studies in Mathematics, 85(2), 305–320.

    Article  Google Scholar 

  • Sfard, A. (2007). When the rules of discourse change, but nobody tells you: making sense of mathematics learning from a commognitive standpoint. The Journal of the Learning Sciences, 16(4), 567–615.

    Article  Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: human development, the growth of discourses, and mathematizing. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Tabach, M., & Nachlieli, T. (2015). Classroom engagement towards definition mediated identification: the case of functions. Educational Studies in Mathematics, 90(2), 163–187.

    Article  Google Scholar 

  • Tabach, M., & Nachlieli, T. (2016). Communicational perspectives on learning and teaching mathematics: prologue. Educational Studies in Mathematics, 91(3), 299–306.

    Article  Google Scholar 

  • Tall, D. (Ed.). (1991). Advanced mathematical thinking. Dordrecht: Kluwer.

    Google Scholar 

  • Thoma, A., & Nardi, E. (2018). Transition from school to university mathematics: manifestations of unresolved commognitive conflict in first year students’ examination scripts. International Journal of Research in Undergraduate Mathematics Education, 4(1), 161–180.

    Article  Google Scholar 

  • Viirman, O. L., & Nardi, E. (2017). From ritual to exploration: the evolution of biology students’ mathematical discourse through mathematical modelling activities. In T. Dooley & G. Gueudet (Eds.), Proceedings of the 10th Congress of the European Society for Research in Mathematics Education (pp. 2274–2281). Dublin: DCU Institute of Education and ERME.

    Google Scholar 

  • Viirman, O., & Nardi, E. (2019). Negotiating different disciplinary discourses: biology students’ ritualized and exploratory participation in mathematical modeling activities. Educational Studies in Mathematics, 101(2), 233–252.

    Article  Google Scholar 

  • Weber, K., & Mejia-Ramos, J. P. (2013). Effective but underused strategies for proof comprehension. In M. Martinez & A. Castro Superfine (Eds.), Proceedings of the 35th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 260–267). Chicago, IL: University of Illinois at Chicago.

    Google Scholar 

  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.

    Article  Google Scholar 

  • Zaslavsky, O., & Shir, K. (2005). Students’ conceptions of a mathematical definition. Journal for Research in Mathematics Education, 36(4), 317–347.

    Google Scholar 

Download references

Funding

This study was partially funded by the VI Plan Propio de Investigación y Transferencia of the Universidad de Sevilla, Spain (grant number IV.4) and the Research Group in Mathematics Education, FQM-226, of the Junta de Andalucía, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Fernández-León.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-León, A., Gavilán-Izquierdo, J.M., González-Regaña, A.J. et al. Identifying routines in the discourse of undergraduate students when defining. Math Ed Res J 33, 301–319 (2021). https://doi.org/10.1007/s13394-019-00301-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13394-019-00301-1

Keywords

Navigation