Abstract
In this paper, we study how undergraduate students define 3D geometrical solids. With this aim, we have identified the routines that are present in the discourse of the students when describing and defining these solids. These routines are one of the properties that characterise the mathematical discourse in the theory of commognition (Sfard 2008). Our results show three different types of routines. The first type is related to the process of describing the solids, the second one to the process of defining the solids and the rest of the routines have a transversal nature. All of them together give us a global vision of the mathematical practice of defining of these undergraduate students. For instance, it seems that some of these students do not have a clear idea of what a definition is. Moreover, there are also differences between the discourse of students when defining 2D figures and the discourse of students when defining 3D solids.

Similar content being viewed by others
References
Biza, I. (2017). “Points”, “slopes” and “derivatives”: substantiations of narratives about tangent line in university mathematics students’ discourses. In T. Dooley & G. Gueudet (Eds.), Proceedings of the 9th Conference of European Research in Mathematics Education (pp. 1993–2000). Dublin: DCU Institute of Education and ERME.
Biza, I., Giraldo, V., Hochmuth, R., Khakbaz, A. S., & Rasmussen, C. (2016). Research on teaching and learning mathematics at the tertiary level: state-of-the-art and looking ahead. Cham: Springer.
Borasi, R. (1992). Learning mathematics through inquiry. Portsmouth, NH: Heinemann Educational Books, Ins.
Caspi, S., & Sfard, A. (2012). Spontaneous meta-arithmetic as a first step toward school algebra. International Journal of Educational Research, 51–52, 45–65.
Copi, I. M. (1972). Introduction to logic. New York, NY: Macmillan Publishing Co., Inc..
De Villiers, M. (1998). To teach definitions in geometry or teach to define? In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 248–255). Stellenbosch: University of Stellenbosch.
Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 25–41). Dordrecht: Kluwer.
Emre-Akdoğan, E., Güçler, B., & Argün, Z. (2018). The development of two high school students’ discourses on geometric translation in relation to the teacher’s discourse in the classroom. EURASIA Journal of Mathematics, Science and Technology Education, 14(5), 1605–1619.
Escudero, I., Gavilán, J. M., & Sánchez-Matamoros, G. (2014). Una aproximación a los cambios en el discurso matemático generados en el proceso de definir [An approach to changes in the mathematical discourse generated in the process of defining]. Revista Latinoamericana de Investigación en Matemática Educativa, 17(1), 7–32.
Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel.
Gavilán-Izquierdo, J. M., Martín-Molina, V., González-Regaña, A. J., Toscano, R., & Fernández-León, A. (in press). Cómo construyen definiciones matemáticas los estudiantes para maestro: una aproximación sociocultural [How preservice teachers construct mathematical definitions: a sociocultural approach]. In E. Badillo, N. Climent, C. Fernández, & M. T. González (Eds.), Investigación sobre el profesor de matemáticas: práctica de aula, conocimiento, competencia y desarrollo profesional (pp. 133–153). Salamanca: Ediciones Universidad de Salamanca.
Gavilán-Izquierdo, J. M., Sánchez-Matamoros, G., & Escudero, I. (2014). Aprender a definir en matemáticas: Estudio desde una perspectiva sociocultural [Learning to define in mathematics: study from a sociocultural approach]. Enseñanza de las Ciencias, 32(3), 529–550.
Heyd-Metzuyanim, E., Morgan, C., Tang, S., Nachlieli, T., Sfard, A., Sinclair, N., & Tabach, M. (2013). Development of mathematical discourse: insights from “strong” discursive research. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 155–179). Kiel: PME.
Inglis, M., & Alcock, L. (2012). Expert and novice approaches to reading mathematical proofs. Journal for Research in Mathematics Education, 43(4), 358–390.
Ioannou, M. (2018). Commognitive analysis of undergraduate mathematics students’ first encounter with the subgroup test. Mathematics Education Research Journal, 30(2), 117–142.
Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge, UK: Cambridge University Press.
Lavie, I., Steiner, A., & Sfard, A. (2019). Routines we live by: from ritual to exploration. Educational Studies in Mathematics, 101(2), 153–176.
Lerman, S. (2001). Cultural, discursive psychology: a sociocultural approach to studying the teaching and learning of mathematics. Educational Studies in Mathematics, 46(1–3), 87–113.
Martín-Molina, V., González-Regaña, A. J., & Gavilán-Izquierdo, J. M. (2018a). Researching how professional mathematicians construct new mathematical definitions: a case study. International Journal of Mathematical Education in Science and Technology, 49(7), 1069–1082.
Martín-Molina, V., Toscano, R., González-Regaña, A., Fernández-León, A., & Gavilán-Izquierdo, J. M. (2018b). Analysis of the mathematical discourse of university students when describing and defining geometrical figures. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 355–362). Umeå: PME.
Nardi, E., Ryve, A., Stadler, E., & Viirman, O. (2014). Commognitive analyses of the learning and teaching of mathematics at university level: the case of discursive shifts in the study of Calculus. Research in Mathematics Education, 16(2), 182–198.
Ní Ríordáin, M., & Flanagan, E. (2019). Bilingual undergraduate students’ language use and meta-level developments relating to functions. Mathematics Education Research Journal, 1–22. https://doi.org/10.1007/s13394-019-00268-z.
Ouvrier-Buffet, C. (2011). A mathematical experience involving defining processes: in-action definitions and zero-definitions. Educational Studies in Mathematics, 76(2), 165–182.
Presmeg, N. (2016). Commognition as a lens for research. Educational Studies in Mathematics, 91(3), 423–430.
Rasmussen, C., Zandieh, M., King, K., & Teppo, A. (2005). Advancing mathematical activity: a practice-oriented view of advanced mathematical thinking. Mathematical thinking and learning, 7(1), 51–73.
Sánchez, V., & García, M. (2014). Socio-mathematical and mathematical norms related to definition in pre-service primary teachers’ discourse. Educational Studies in Mathematics, 85(2), 305–320.
Sfard, A. (2007). When the rules of discourse change, but nobody tells you: making sense of mathematics learning from a commognitive standpoint. The Journal of the Learning Sciences, 16(4), 567–615.
Sfard, A. (2008). Thinking as communicating: human development, the growth of discourses, and mathematizing. New York, NY: Cambridge University Press.
Tabach, M., & Nachlieli, T. (2015). Classroom engagement towards definition mediated identification: the case of functions. Educational Studies in Mathematics, 90(2), 163–187.
Tabach, M., & Nachlieli, T. (2016). Communicational perspectives on learning and teaching mathematics: prologue. Educational Studies in Mathematics, 91(3), 299–306.
Tall, D. (Ed.). (1991). Advanced mathematical thinking. Dordrecht: Kluwer.
Thoma, A., & Nardi, E. (2018). Transition from school to university mathematics: manifestations of unresolved commognitive conflict in first year students’ examination scripts. International Journal of Research in Undergraduate Mathematics Education, 4(1), 161–180.
Viirman, O. L., & Nardi, E. (2017). From ritual to exploration: the evolution of biology students’ mathematical discourse through mathematical modelling activities. In T. Dooley & G. Gueudet (Eds.), Proceedings of the 10th Congress of the European Society for Research in Mathematics Education (pp. 2274–2281). Dublin: DCU Institute of Education and ERME.
Viirman, O., & Nardi, E. (2019). Negotiating different disciplinary discourses: biology students’ ritualized and exploratory participation in mathematical modeling activities. Educational Studies in Mathematics, 101(2), 233–252.
Weber, K., & Mejia-Ramos, J. P. (2013). Effective but underused strategies for proof comprehension. In M. Martinez & A. Castro Superfine (Eds.), Proceedings of the 35th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 260–267). Chicago, IL: University of Illinois at Chicago.
Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.
Zaslavsky, O., & Shir, K. (2005). Students’ conceptions of a mathematical definition. Journal for Research in Mathematics Education, 36(4), 317–347.
Funding
This study was partially funded by the VI Plan Propio de Investigación y Transferencia of the Universidad de Sevilla, Spain (grant number IV.4) and the Research Group in Mathematics Education, FQM-226, of the Junta de Andalucía, Spain.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fernández-León, A., Gavilán-Izquierdo, J.M., González-Regaña, A.J. et al. Identifying routines in the discourse of undergraduate students when defining. Math Ed Res J 33, 301–319 (2021). https://doi.org/10.1007/s13394-019-00301-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13394-019-00301-1


