Tethering towards number: synthesizing cognitive variability and stage-oriented development in children’s arithmetic thinking

Abstract

Differing research worldviews have typically resulted in interpretations at odds with one another. Yet, leveraging distinct perspectives can lead to novel interpretations and theoretical construction. Via an empirically grounded research commentary, we describe the value of such activity through the lens of previously reported findings. This synthesis of research from dissimilar scholarly traditions is one example of how paradigms in related but sometimes disconnected fields were used to provide a more comprehensive model of foundational numeracy development. While critique and skepticism may be valuable scholarly tools, we argue that such practices should be balanced with openness and belief towards ideas from worldviews different than our own. This balance can provide new and creative interpretations and extend our collective research power.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arzarello, F., Bosch, M., Lenfant, A., & Prediger, S. (2007). Different theoretical perspectives in research from teaching problems to research problems. In D. Pitta-Pantazi, G. Phillipou, et al. (Eds.), Proceedings of the 5th Congress of the European Society for Research in Mathematics Education (CERME 5) (pp. 1618–1627). Cyprus: ERME.

    Google Scholar 

  2. Brownell, W. A. (1947). The place of meaning in the teaching of arithmetic. Elementary School Journal, 47(5), 256–265.

    Article  Google Scholar 

  3. Carpenter, T. P. (1985). Toward a theory of construction. Journal for Research in Mathematics Education, 16(1), 70–76.

    Article  Google Scholar 

  4. Chen, Z., & Siegler, R. S. (2000). Overlapping waves theory. Monographs of the Society for Research in Child Development, 65(2), 7–11.

    Article  Google Scholar 

  5. Clements, D. H. (1989). Review: consensus, more or less. Journal for Research in Mathematics Education, 20(1), 111–119.

    Article  Google Scholar 

  6. Clements, D. H. (1999). Subitizing: what is it? Why teach it? Teaching Children Mathematics, 5(7), 400–405.

    Google Scholar 

  7. Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: the learning trajectories approach. New York: Routledge.

    Google Scholar 

  8. Cobb, P., Yackel, E., & Wood, T. (1992). A constructivist alternative to the representational view of mind. Journal for Research in Mathematics Education, 23(1), 2–33.

    Article  Google Scholar 

  9. Erickson, F. (2006). Definition and analysis of data from videotape: some research procedures and their rationales. In J. L. Green, G. Camilli, P. B. Elmore, A. Skukauskaite, & E. Grace (Eds.), Handbook of complementary methods in education research (pp. 177–192). Hillsdale: Erlbaum.

    Google Scholar 

  10. Fazio, L. K., DeWolf, M., & Siegler, R. S. (2016). Strategy use and strategy choice in fraction magnitude comparison. Journal of Experimental Psychology, 42(1), 1–16.

    Google Scholar 

  11. Fosnot, C., & Dolk, M. (2001). Young mathematicians at work: constructing number sense, addition and subtraction. Portsmouth: Heinemann.

    Google Scholar 

  12. Fuson, K. C. (1982). An analysis of the counting—on solution procedure in addition. In T. P. Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: a cognitive perspective (pp. 67–81). Hillsdale: Erlbaum.

    Google Scholar 

  13. Fuson, K. C. (1988). Children’s counting and concepts of number. New York: Springer-Verlag.

    Google Scholar 

  14. Fuson, K. C., Richards, J., & Briars, D. J. (1982). The acquisition and elaboration of the number word sequence. In C. J. Brainerd (Ed.), Children’s logical and mathematical cognition (pp. 33–92). New York: Springer.

    Google Scholar 

  15. Fuson, K. C., Secada, W. G., & Hall, J. W. (1983). Matching, counting, and conservation of numerical equivalence. Child Development, 54(1), 91–97.

    Article  Google Scholar 

  16. Fuson, K. C., Pergament, G. G., & Lyons, B. G. (1985). Collection terms and preschoolers’ use of the cardinality rule. Cognitive Psychology, 17(6), 1429–1436.

    Google Scholar 

  17. Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1/2), 43–74.

    Article  Google Scholar 

  18. Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge: Harvard University Press.

    Google Scholar 

  19. Gelman, R., & Meck, E. (1983). Preschoolers counting: principles before skill. Cognition, 13(3), 343–359.

    Article  Google Scholar 

  20. Gelman, R., & Tucker, M. F. (1975). Further investigations of the young child’s conception of number. Child Development, 46(1), 167–175.

    Article  Google Scholar 

  21. Glaser, B., & Strauss, A. (1967). The discovery of the grounded theory: strategies for qualitative research. New York: Aldine de Gruyter.

    Google Scholar 

  22. Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79(4), 329–343.

    Article  Google Scholar 

  23. Ilg, F., & Ames, L. B. (1951). Developmental trends in arithmetic. Journal of Genetic Pschology, 79(1), 3–28.

    Google Scholar 

  24. Karp, A., & Schubring, G. (Eds.). (2014). Handbook on the history of mathematics education. New York: Springer.

    Google Scholar 

  25. Kosslyn, S. M. (1980). Image and mind. Cambridge: Harvard University Press.

    Google Scholar 

  26. Kosslyn, S. M. (2005). Mental images and the brain. Cognitive Neuropsychology, 22(3/4), 333–347.

    Article  Google Scholar 

  27. Moschkovich, J. N., & Brenner, M. E. (2000). Integrating a naturalistic paradigm into research on mathematics and science cognition and learning. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education (pp. 457–486). Hillsdale: Erlbaum.

    Google Scholar 

  28. Olive, J. (2001). Children's number sequences: an explanation of Steffe's constructs and an extrapolation to rational numbers of arithmetic. The Mathematics Educator, 11(1), 4–9.

    Google Scholar 

  29. Piaget, J. (1952). The child 's concept of number. London: Routledge.

    Google Scholar 

  30. Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: first steps towards a conceptual framework. ZDM, 40(2), 165–178.

    Article  Google Scholar 

  31. Putnam, H. (1988). Representation and reality. Cambridge: Bradford.

    Google Scholar 

  32. Pylyshyn, Z. W. (1974). What the mind’s eye tells the mind’s brain: a critique of mental imagery. In J. M. Nichols (Ed.), Images, perceptions, and knowledge (pp. 1–36). New York: Springer.

    Google Scholar 

  33. Pylyshyn, Z. W. (2002). Mental imagery: In search of a theory. Behavioral and Brain Sciences, 25(2), 157–238.

    Article  Google Scholar 

  34. Rathgeb-Schnierer, E., & Green, M. (2013). Flexibility in mental calculation in elementary students from different math classes. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the eighth congress of the European Society for Research in Mathematics Education (pp. 353–362). Ankara: Middle East Technical University.

    Google Scholar 

  35. Rorty, R. (1979). Philosophy and the mirror of our nature. Princeton: Princeton University Press.

    Google Scholar 

  36. Seigler, R. S. (2000). The rebirth of children's learning. Child Development, 71(1), 26–35.

    Article  Google Scholar 

  37. Siegler, R. S. (1987). Strategy choices in subtraction. In J. A. Sloboda & D. Rogers (Eds.), Cognitive processes in mathematics (pp. 81–106). Oxford: Clarendon Press.

    Google Scholar 

  38. Siegler, R. S. (1994). Cognitive variability: a key to understanding cognitive development. Current Directions in Psychological Science, 3(1), 1–5.

    Article  Google Scholar 

  39. Siegler, R.S. & Crowley, K. (1994). Constraints on nonprivileged domains. Cognitive Psychology, 27(2), 194-226.

  40. Siegler, R. S. (2006). Microgenetic analyses of learning. In D. Kuhn, R. S. Siegler, W. Damon, & R. M. Lerner (Eds.), Handbook of child psychology: Vol. 2. Cognition, perception, and language (6th ed., pp. 464–510). Hoboken: Wiley.

    Google Scholar 

  41. Siegler, R. S., & Robinson, M. (1982). The development of numerical understandings. In H. W. Reese & L. P. Lipsett (Eds.), Advances in child development and behavior (Vol. 16, pp. 242–312). New York: Academic Press.

    Google Scholar 

  42. Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and subtraction: How do children know what to do? In C. Sophian (Ed.), The origins of cognitive skills (pp. 229–293). Hillsdale: Erlbaum.

    Google Scholar 

  43. Smith, T. M., Cobb, P., Farran, D. C., Cordray, D. S., & Munter, C. (2013). Evaluating Math Recovery: assessing the causal impact of a diagnostic tutoring program on student achievement. American Education Research Journal, 50(2), 397–428.

    Article  Google Scholar 

  44. Sophian, C. (2007). The origins of mathematical knowledge in childhood. New York: Lawrence Erlbaum.

    Google Scholar 

  45. Steffe, L. (1992). Learning stages in the construction of the number sequence. In J. Bideaud, C. Meljac, & J. Fischer (Eds.), Pathways to number: children’s developing numerical abilities (pp. 83–88). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  46. Steffe, L. P. (2013). Establishing mathematics education as an academic field: a constructive odyssey. Journal for Research in Mathematics Education, 44(2), 354–370.

    Google Scholar 

  47. Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267–307). Mahwah: Erlbaum.

    Google Scholar 

  48. Steffe, L. P., von Glasersfeld, E., Richards, J., & Cobb, P. (1983). Children’s counting types: philosophy, theory, and application. New York: Praeger Scientific.

  49. Steffe, L. P., Cobb, P., & von Glasersfeld, E. (1988). Construction of arithmetical meanings and strategies. New York: Springer-Verlag.

    Google Scholar 

  50. Svenson, O., & Sjöberg, K. (1983). Evolution of cognitive processes for solving simple additions during the first three school years. Scandinavian Journal of Psychology, 24(1), 117–124.

    Article  Google Scholar 

  51. Thomas, J. & Tabor, P.D. (2012). Developing Quantitative Mental Imagery. Teaching Children Mathematics, 19(3), 174-183.

  52. Thomas, J. & Harkness, S. S. (2013). Implications for intervention: Categorizing the quantitative mental imagery of children. Mathematics Education Research Journal, 25(2), 231-256.

  53. Thomas, J. & Harkness, S.S. (2016). Patterns of Non-verbal Social Interaction within Intensive Mathematics Intervention Contexts. Mathematics Education Research Journal, 28(2), 277-302.

  54. Thomas, J., Tabor, P. D., & Wright, R. J. (2010). Three aspects of first-graders' number knowledge: Observations and instructional implications. Teaching Children Mathematics, 17 (5), 299-308.

  55. Thompson, P. W. (1979). The Soviet-style teaching experiment in mathematics education. Paper presented at the Annual Research Meeting of the National Council of Teachers of Mathematics, Boston, MA.

  56. Thompson, P. W. (1982). Were lions to speak, we wouldn't understand. Journal of Mathematical Behavior, 3(2), 147–165.

    Google Scholar 

  57. Threlfall, J. (2002). Flexible mental calculation. Educational Studies in Mathematics, 50(1), 29–47.

    Article  Google Scholar 

  58. Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2016). Elementary and middle school mathematics: teaching developmentally (9th ed.). New York: Pearson.

    Google Scholar 

  59. Wirszup, I., & Kilpatrick, J. (Eds.). (1975). Soviet studies in the psychology of mathematics education (Vol. 1-14). Palo Alto and Reston: School Mathematics Study Group and National Council of Teachers of Mathematics.

  60. Wright, R. J. (1994). A study of the numerical development of 5-year-olds and 6-year-olds. Educational Studies in Mathematics, 26(1), 25–44.

    Article  Google Scholar 

  61. Wright, R.J., Ellemor-Collins, D. (2016). The Learning Framework in Number: Pedagogical Tools for Assessment and Instruction. London: Paul Chapman Publications/Sage.

  62. Wright, R. J., Martland, J., Stafford, A., & Stanger, G. (2002). Teaching number: advancing children’s skills and strategies. London: Paul Chapman Publications/Sage.

    Google Scholar 

  63. Wright, R. J., Martland, J., & Stafford, A. (2006). Early numeracy: assessment for teaching and intervention (2nd ed.). London: Paul Chapman publications/Sage.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan Norris Thomas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, J.N., Harkness, S.S. Tethering towards number: synthesizing cognitive variability and stage-oriented development in children’s arithmetic thinking. Math Ed Res J 31, 325–347 (2019). https://doi.org/10.1007/s13394-018-00256-9

Download citation

Keywords

  • Numeracy
  • Cognition
  • Theory
  • Teaching experiment
  • Constructivism