Skip to main content

Advertisement

Log in

Using collective argumentation to engage students in a primary mathematics classroom

  • Original Article
  • Published:
Mathematics Education Research Journal Aims and scope Submit manuscript

Abstract

This article focuses on using sociocultural theory to support student engagement with mathematics. The sociocultural approach used, collective argumentation (CA), is based on interactive principles necessary for coordinating student engagement in the discourse of the classroom. A goal of the research was to explore the affordances and constraints of using CA to enrich student engagement with mathematics. The design of the research was based on a teaching experiment that sought to capture the influence of social and cultural processes on learning and development. Participants included primary and secondary school teachers and their mathematics classes. This article focuses on the practice of one female primary school teacher. Data sources included interview transcripts, report writings, journal entries and observational records. Data were analysed using a participation framework. Findings suggest that aspects of CA such as students explaining and justifying ideas and presenting ideas to the whole class can be used by teachers to promote student engagement with mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Boaler, J. (2008). Promoting ‘relational equity’ and high mathematics achievement through an innovative mixed-ability approach. British Educational Research Journal, 34(2), 167–194.

    Article  Google Scholar 

  • Bobis, J., Anderson, J., Martin, A., & Way, J. (2011). A model for mathematics instruction to enhance students’ motivation and engagement. In D. J. Brahier (Ed.), Motivation and disposition: pathways to learning mathematics, volume 73 (pp. 31–42). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Brown, R.A.J. (1994). Collective mathematical thinking in the primary classroom: A conceptual and empirical analysis within a sociocultural framework. Unpublished Bachelor of Educational Studies (Hons) Thesis, University of Queensland, Brisbane.

  • Brown, R. A. J. (2001). A sociocultural study of the emergence of a classroom community of practice. Unpublished Doctor of Philosophy Thesis, University of Queensland, Brisbane. http://espace.library.uq.edu.au/view/UQ:105702

  • Brown, R. (2005a). Learning communities and the nature of teacher participation in a learning community. Literacy Learning: the Middle Years, 13(2), 8–15.

    Google Scholar 

  • Brown, R. (2005b). Learning collaboratively. In D. Pendergast & N. Bahr (Eds.), Teaching middle years: rethinking curriculum, pedagogy and assessment (pp. 181–195). Crows Nest: Allen & Unwin.

    Google Scholar 

  • Brown, R. (2007). Exploring the social positions that students construct within a classroom community of practice. International Journal of Educational Research, 46, 116–128.

    Article  Google Scholar 

  • Brown, R. (2009a). Engaging in collaborative activity when the teacher isn’t there: who regulates the learning? Australian Journal of Middle Schooling, 9(2), 12–18.

    Google Scholar 

  • Brown, R. (2009b). Teaching for social justice: exploring the development of student agency through participation in the literacy practices of a mathematics classroom. Journal of Mathematics Teacher Education, 12(3), 171–185.

    Article  Google Scholar 

  • Brown, R. (2010). Collaborative learning. In D. Pendergast & N. Bahr (Eds.), Teaching middle years: rethinking curriculum, pedagogy and assessment (2nd ed., pp. 223–237). Crows Nest: Allen & Unwin.

    Google Scholar 

  • Brown, R. (2011). Engaging potential in the mathematics classroom: moving from practising to be numerate towards practicing mathematical literacy. In C. Wyatt-Smith, J. Elkins, & S. Gunn (Eds.), Multiple perspectives on difficulties in learning literacy and numeracy (pp. 275–293). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Brown, R., Heck, D., Pendergast, D., & Kanasa, H. (2014). Middle-years teachers’ conceptions and adaptive responses to student diversity in the culture of schooling. Journal of the Middle Years of Schooling Association, 14(1), 4–15.

    Google Scholar 

  • Brown, R., & Hirst, E. (2005). Mathematical literacy: promoting literate practice in a year 7 classroom. Literacy Learning: the Middle Years, 13(3), 29–38.

    Google Scholar 

  • Brown, R., & Hirst, E. (2007). Developing an understanding of the mediating role of talk in the elementary mathematics classroom. Journal of Classroom Interaction, 41(2).

  • Brown, R., & Hirst, E. (2010). Co-constructing potentials in literacy. In M. Hyde, L. Carpenter, & B. Conway (Eds.), Diversity and inclusion in Australian schools (pp. 119–136). Melbourne: Oxford University Press.

    Google Scholar 

  • Brown, R., & Redmond, T. (2015). Coming to do mathematics in the margins. In M. Marshman, V. Geiger, & A. Bennison (Eds.), Mathematics education in the margins: proceedings of the 38th annual conference of the mathematics education research Group of Australasia (pp. 125–132). Sunshine Coast: MERGA.

    Google Scholar 

  • Brown, R., Redmond, T., Sheehey, J., & Lang, D. (2015). Mathematical modelling—an example from an inter-school modelling challenge. In N. G. Kit Ee Dawn & N. H. Lee (Eds.), Mathematical modelling—from theory to practice (pp. 143–160). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Brown, R. A. J., & Renshaw, P. D. (2000). Collective argumentation: a sociocultural approach to reframing classroom teaching and learning. In H. Cowie & G. van der Aalsvoort (Eds.), Social interaction in learning and instruction: the meaning of discourse for the construction of knowledge (pp. 52–66). Amsterdam: Pergamon Press.

    Google Scholar 

  • Brown, R., & Renshaw, P. (2006). Positioning students as actors and authors: a chronotopic analysis of collaborative learning activities. Mind, Culture, and Activity, 13(3), 244–256.

    Article  Google Scholar 

  • Chubb, I., & Chubb, I. W. (2012). Mathematics, engineering & science in the national interest. Department of Industry, Innovation, Science, Research and Tertiary Education, Canberra: Australia.

    Google Scholar 

  • Civil, M., & Hunter, R. (2015). Participation of non-dominant students in argumentation in the mathematics classroom. Intercultural Education, 26(4), 296–312.

    Article  Google Scholar 

  • Cobb, P. (2000). Conducting teaching experiments in collaboration with teachers. In A. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Cobb, P., & Bauersfeld, H. (Eds.). (1995). Emergence of mathematical meaning: interaction in class- room cultures. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Cobb, P., Stephan, M., & Bowers, J. (2011). Part IV classroom mathematical practices: chapter 8: introduction. In E. Yackel, K. Gravemeijer, & A. Sfard (Eds.), A journey in mathematics education research: insights from the work of Paul Cobb (pp. 109–115). Dordrecht: Springer.

    Google Scholar 

  • Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2001). Participating in classroom mathematical practices. The Journal of the Learning Sciences, 10(1&2), 113–163.

    Article  Google Scholar 

  • Cobb, P., Wood, T., Yackel, E., & McNeal, B. (1992). Characteristics of classroom mathematics traditions: an interactional analysis. American Educational Research Journal, 29(3), 573–604.

    Article  Google Scholar 

  • Cobb, P., Yackel, E., & Wood, T. (1989). Young children’s emotional acts while engaged in mathematical problem solving. In D. B. McLeod, & V. M. Adams (Eds.), Affect and mathematical problem solving: a new perspective (pp. 117–148). New York: Springer.

  • Finn, J. D. (1989). Withdrawing from school. Review of Educational Research, 59, 117–142.

    Article  Google Scholar 

  • Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59–109.

    Article  Google Scholar 

  • Franke, M. L., Kazemi, E., & Battey, D. (2007). Mathematics teaching and classroom practice. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 225–256). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Fredricks, J. A., & McColskey, W. (2012). The measurement of student engagement: a comparative analysis of various methods and student self-report instruments. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 763–782). New York: Springer.

  • Goos, M., Galbraith, P., & Renshaw, P. (2002). Socially mediated metacognition: creating collaborative zones of proximal development in small group problem solving. Educational Studies in Mathematics, 49(2), 193–223.

    Article  Google Scholar 

  • Goos, M. (2014). Creating opportunities to learn in mathematics education: a sociocultural perspective. Mathematics Education Research Journal, 26(3), 439–457.

    Article  Google Scholar 

  • Hirst, E. W., & Brown, R. A. J. (2008). Pedagogy as dialogic relationship. In M. Hellstén & A. Reid (Eds.), Researching international pedagogies (pp. 179–202). Netherlands: Springer.

    Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge University Press.

  • Leatham, K. R. (2006). Viewing mathematics teachers’ beliefs as sensible systems. Journal of Mathematics Teacher Education, 9(1), 91–102.

    Article  Google Scholar 

  • Makar, K., Bakker, A., & Ben-Zvi, D. (2015). Scaffolding norms of argumentation-based inquiry in a primary mathematics classroom. ZDM, 47(7), 1107–1120.

    Article  Google Scholar 

  • Marshman, M., & Brown, R. (2014). Coming to know and do mathematics with disengaged students. Mathematics Teacher Education and Development, 16(2), 71–88.

    Google Scholar 

  • Martin, A. J., Anderson, J., Bobis, J., Way, J., & Vellar, R. (2012). Switching on and switching off in mathematics: an ecological study of future intent and disengagement among middle school students. Journal of Educational Psychology, 104(1), 1–18.

    Article  Google Scholar 

  • Meade, P., & Mc Meniman, M. (1992). Stimulated recall—an effective methodology for examining successful teaching in science. Australian Educational Researcher, 19(3), 1–18.

    Article  Google Scholar 

  • Miller, M. (1987). Argumentation and cognition. In M. Hickmann (Ed.), Social and functional approaches to language and thought (pp. 225–249). London: Academic Press.

    Google Scholar 

  • Newmann, F. (1991). Student engagement in academic work: expanding the perspective on secondary school effectiveness. In J. R. Bliss & W. A. Firestone (Eds.), Rethinking effective schools: research and practice (pp. 58–76). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Oakes, J. (1990). Multiplying inequalities: the effects of race, social class, and tracking on opportunities to learn mathematics and science. Santa Monica: RAND.

    Google Scholar 

  • O'Brien, J. (1993). Action research through stimulated recall. Research in Science Education, 23(1), 214–221.

    Article  Google Scholar 

  • Patton, M. Q. (1999). Enhancing the quality and credibility of qualitative analysis. Health Services Research, 34(5 Pt 2), 1189–1208.

    Google Scholar 

  • Redmond, T., Brown, R., & Sheehy, J. (2013). Exploring the relationship between mathematical modelling and classroom discourse. In S. G. A., G. Kaiser, W. Blum, & J. Brown (Eds.), Mathematical modelling: connecting to practice—teaching practice and the practice of applied mathematicians. Netherlands: Springer Publications.

    Google Scholar 

  • Renshaw, P. D., & Brown, R. A. J. (1997). Learning partnerships: the role of teachers in a community of learners. In L. Logan & J. Sachs (Eds.), Meeting the challenges of primary schools (pp. 200–211). London: Routledge.

    Google Scholar 

  • Renshaw, P., & Brown, R. (2007). Formats of classroom talk for integrating everyday and scientific discourse: replacement, interweaving, contextual privileging and pastiche. Language and Education, 21(6), 531–549.

    Article  Google Scholar 

  • Singh, P., Brown, R., & Märtsin, M. (2012). Negotiating pedagogic dilemmas in non-traditional educational contexts. An Australian case study of teachers’ work. In H. Daniels (Ed.), Vygotsky and sociology (pp. 93–113). London: Routledge, Taylor and Francis.

    Google Scholar 

  • Stough, M. (2001). Using stimulated recall in classroom observation and professional development. Paper presented at the annual meeting of the American Educational Research Association Seattle, Washington.

  • Sullivan, P. (2011). Teaching mathematics: using research-informed strategies. Australian Education Review. Camberwell, Victoria: ACER Press.

    Google Scholar 

  • Thomson, S., De Bortoli, L., & Buckley, S. (2013). PISA 2012: How Australia measures up: the PISA 2012 assessment of students’ mathematical, scientific and reading literacy. Melbourne: ACER.

    Google Scholar 

  • Vadeboncoeur, J. A. (2006). Engaging young people: learning in informal contexts. Review of Research in Education, 30, 239–278.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Cambridge, Mass: Harvard University Press.

    Google Scholar 

  • Vygotsky, L. (1987). Thinking and speech. In R. W. Rieber & A. S. Carton (Eds.), The collected works of L.S. Vygotsky, volume 1: problems of general psychology. New York: Plenum Press.

    Google Scholar 

  • Wenger, E. (1998). Communities of practice: learning, meaning, and identity. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wertsch, J. V. (1991). Voices of the mind: a sociocultural approach to mediated action. Cambridge, Mass: Harvard University Press.

    Google Scholar 

  • Wiltshire, K., McMeniman, M., & Tolhurst, T. (1994). Report of the review of the Queensland school curriculum: shaping the future (Vol. 1). Queensland: Government Printer.

    Google Scholar 

  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Brown.

Additional information

This work was supported by the Australian Research Council Discovery Grant Scheme, [DP0667073]: Researching Collective Argumentation in Mathematics and Science Classrooms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, R. Using collective argumentation to engage students in a primary mathematics classroom. Math Ed Res J 29, 183–199 (2017). https://doi.org/10.1007/s13394-017-0198-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13394-017-0198-2

Keywords

Navigation