Skip to main content
Log in

Facilitating and direct guidance in student-centered classrooms: addressing “lines or pieces” difficulty

Mathematics Education Research Journal Aims and scope Submit manuscript

Cite this article

Abstract

This study explores, from both constructivist and cognitive perspectives, teacher guidance in student-centered classrooms when addressing a common learning difficulty with equivalent fractions—lines or pieces—based on number line models. Findings from three contrasting cases reveal differences in teachers’ facilitating and direct guidance in terms of anticipating and responding to student difficulties, which leads to differences in students’ exploration opportunity and quality. These findings demonstrate the plausibility and benefit of integrating facilitating and direct guidance in student-centered classrooms. Findings also suggest two key components of effective teacher guidance including (a) using pretraining through worked examples and (b) focusing on the relevant information and explanations of concepts. Implementations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The same number should be “except 0,” which was not pointed out by the textbook. This issue was discussed in the prior study, Ding (2007).

References

  • Anderson, J. R., Reder, L. M., & Simon, H. A. (2000). Applications and misapplications of cognitive psychology to mathematics education. Texas Educational Review, Summer, 29–49.

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, 389–407.

    Article  Google Scholar 

  • Bills, L., Dreyfus, T., Mason, J., Tsamir, P., Watson, A., & Zaslavsky, O. (2006). Exemplification in mathematics education. In J. Novotna (Ed.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education. PME: Prague.

    Google Scholar 

  • Bright, W., Behr, M. J., Post, T. R., & Wachsmuth, I. (1988). Identifying fractions on number lines. Journal for Research in Mathematics Education, 19, 215–232.

    Article  Google Scholar 

  • Bruner, J. S. (1961). The art of discovery. Harvard Educational Review, 31, 21–32.

    Google Scholar 

  • Cai, J. (2003). What research tells us about teaching mathematics through problem solving. In F. Lester (Ed.), Research and issues in teaching mathematics through problem solving (pp. 241–254). Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • Carpenter, T. P., Fennema, E., & Franke, M. L. (1996). Cognitively guided instruction: A knowledge base for reform in primary mathematics instruction. The Elementary School Journal, 97, 3–20.

    Article  Google Scholar 

  • Chapin, S., O’Connor, M. C., & Anderson, N. (2009). Classroom discussions: Using math talk to help students learn, Grades K-6 (2nd ed.). Sausalito: Math Solutions.

    Google Scholar 

  • Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understandings of fractions. Educational Studies in Mathematics, 64, 293–316.

    Article  Google Scholar 

  • Chazan, D., & Ball, D. L. (1999). Beyond being told not to tell. For the Learning of Mathematics, 19(2), 2–10.

    Google Scholar 

  • Cobb, P. (1994). Where is the mind? Constructivist and sociocultural perspectives on mathematical development. Educational Researcher, 23(7), 13–20.

    Article  Google Scholar 

  • Cobb, P., Wood, T., Yackel, E., Nicholls, J., Wheatley, G., Trigatti, B., et al. (1991). Assessment of a problem-centered second grade mathematics project. Journal for Research in Mathematics Education, 22, 3–29.

    Article  Google Scholar 

  • Dean, D., & Kuhn, D. (2006). Direct instruction vs. discovery: The long view. Science Education, 91, 384–397.

    Article  Google Scholar 

  • Ding, M. (2007). Knowing mathematics for teaching: Case studies of teachers’ responses to students’ errors and difficulties in teaching equivalent fractions. Unpublished dissertation. Texas A&M University. College Station, TX.

  • Ding, M., Li, X., Piccolo, D., & Kulm, G. (2007). Teacher interventions in cooperative-learning mathematics classes. Journal of Educational Research, 100, 162–175.

    Article  Google Scholar 

  • Ding, M., Li, X., Capraro, M. M., & Kulm, G. (2011). A case study of teacher responses to a doubling error and difficulty in learning equivalent fractions. Investigations in Mathematics Learning, 4(2), 42–73.

    Google Scholar 

  • Empson, S. B. (1999). Equal sharing and shared meaning: The development of fraction concepts in a first-grade classroom. Cognition and Instruction, 17, 283–342.

    Article  Google Scholar 

  • Empson, S. B., & Levi, L. (2011). Extending children’s mathematics: Fractions and decimals. Portsmouth: Heinemann.

    Google Scholar 

  • Forman, E., & Ansell, E. (2001). The multiple voices of a mathematics classroom community. Educational Studies in Mathematics, 46, 115–142.

    Article  Google Scholar 

  • Franke, M. L., & Kazemi, E. (2001). Learning to teach mathematics: Developing a focus on students’ mathematical thinking. Theory into Practice, 40, 102–109.

    Article  Google Scholar 

  • Franke, M. L., Kazemi, E., & Battey, D. (2007). Understanding teaching and classroom practice in mathematics. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 225–256). Greenwich: Information Age.

    Google Scholar 

  • Gagné, R. M., & Paradise, N. E. (1961). Abilities and learning sets in knowledge acquisition. Psychological Monographs, 75, 518.

    Article  Google Scholar 

  • Hiebert, J., & Wearne, D. (1993). Instructional tasks, classroom discourse, and students’ learning in second-grade arithmetic. American Educational Research Journal, 30, 393–425.

    Article  Google Scholar 

  • Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., et al. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher, 25(4), 12–21.

    Article  Google Scholar 

  • Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Wearne, D., Murray, H., et al. (1997). Making sense: Teaching and learning mathematics with understanding. Portsmouth: Heinemann.

    Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologists, 41(2), 75–86.

    Article  Google Scholar 

  • Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Sciences, 15, 661–667.

    Article  Google Scholar 

  • Lappan, G., Fey, J. T., Fitzgerald, W. M., Friel, S. N., & Phillips, E. D. (Eds.). (1998). Connected mathematics: Bits and pieces 1. Understanding rational numbers. Teacher’s Edition. Menlo Park: Dale Seymour.

    Google Scholar 

  • Leinhardt, G., & Smith, D. A. (1985). Expertise in mathematics instruction: Subject matter knowledge. Journal of Educational Psychology, 99, 247–271.

    Article  Google Scholar 

  • Mayer, R. E. (2005). Principles for managing essential processing in multimedia learning: segmenting, pretraining, and modality principles. The Cambridge handbook of multimedia learning (pp. 169–182). New York: Cambridge University Press.

  • Meloth, M. S., & Deering, P. D. (1999). The role of the teacher in promoting cognitive processing during collaborative learning. In A. M. O’Donnell & A. King (Eds.), Cognitive perspectives on peer learning (pp. 235–255). Mahwah: Erlbaum.

    Google Scholar 

  • Mitchell, A., & Horne, M. (2008). Fraction number line tasks and the additivity concept of length measurement. In M. Goos, R. Brown, & K. Makar (Eds.), Proceedings of the 31st annual conference of the mathematics education research group of Australasia (pp. 353–360). Adelaide: Merga.

    Google Scholar 

  • Moreno, R. (2004). Decreasing cognitive load in novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instructional Science, 32, 99–113.

    Article  Google Scholar 

  • Moss, J., & Case, R. (1999). Developing children’s understanding of the rational numbers: A new model and an experimental curriculum. Journal for Research in Mathematics Education, 30, 122–147.

    Article  Google Scholar 

  • Ni, Y. (2000). How valid is it to use number line to measure children’s conceptual knowledge about rational number? Educational Psychology, 20, 139–152.

    Article  Google Scholar 

  • O’Connor, M. C., & Michaels, S. (1993). Aligning academic task and participation status through revoicing: Analysis of a classroom discourse strategy. Anthropology & Education Quarterly, 24, 318–335.

    Article  Google Scholar 

  • Piaget, J. (1978). Success and understanding. Cambridge: Harvard University Press.

    Google Scholar 

  • Richland, L. E., Stigler, J. W., & Holyoak, K. J. (2012). Teaching the conceptual structure of Mathematics. Educational Psychologist, 47, 189–203.

    Article  Google Scholar 

  • Santagata, R. (2004). “Are you joking or are you sleeping?” Cultural beliefs and practices in Italian and U.S. teachers’ mistake-handling strategies. Linguistics and Education, 15, 141–164.

    Article  Google Scholar 

  • Sfard, A. (2001). There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. Educational Studies in Mathematics, 46, 13–57.

    Article  Google Scholar 

  • Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: Helping teachers learn to better incorporate student thinking. Mathematical Thinking and Learning, 10, 313–340.

    Article  Google Scholar 

  • Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: The Free Press.

    Google Scholar 

  • Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 19–30). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Sweller, J. (2006). The worked example effect and human cognition. Learning and Instruction, 16, 165–169.

    Article  Google Scholar 

  • Sweller, J., van Merriënboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.

    Article  Google Scholar 

  • Webb, N. M., Franke, M. L., De, T., Chan, A. G., Freund, D., Shein, P., et al. (2009). ‘Explain to your partner’: teachers’ instructional practices and students’ dialogue in small groups. Cambridge Journal of Education, 39, 49–70.

    Article  Google Scholar 

  • Wu, H. (2009). What’s sophisticated about elementary mathematics? American Educator, 33(3), 4–14.

    Google Scholar 

  • Zack, V., & Graves, B. (2001). Making mathematical meaning through dialogue: “Once you think of it, the Z minus three seems pretty weird. Educational Studies in Mathematics, 46, 229–271.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Kelley Marshall for helpful assistance. Special thanks to Dr. Xiaobao Li at Widener University for serving as the second coder in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meixia Ding.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ding, M., Li, X. Facilitating and direct guidance in student-centered classrooms: addressing “lines or pieces” difficulty. Math Ed Res J 26, 353–376 (2014). https://doi.org/10.1007/s13394-013-0095-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13394-013-0095-2

Keywords

Navigation