Skip to main content

Advertisement

Log in

Cultural-historical activity theory: Vygotsky’s forgotten and suppressed legacy and its implication for mathematics education

  • Review
  • Published:
Mathematics Education Research Journal Aims and scope Submit manuscript

Abstract

Cultural-historical activity theory—with historical roots in dialectical materialism and the social psychology to which it has given rise—has experienced exponential growth in its acceptance by scholars interested in understanding knowing and learning writ large. In education, this theory has constituted something like a well kept secret that is only in the process of gaining larger levels of acceptance. Mathematics educators are only beginning to realise the tremendous advantages that the theory provides over other theories. In this review essay, I articulate the theory as it may relate to the issues that concern mathematics education and educators with a particular focus on the way in which it addresses logical contradictions in existing theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bakhtin, M. (1981). The dialogic imagination. Austin: University of Texas Press.

    Google Scholar 

  • Bakhtine, M. [Volochinov, V. N.] (1977). Le marxisme et la philosophie du langage: essai d’application de la méthode sociologique en linguistique [Marxism and the philosophy of language: Essay on the application of sociological method in linguistics] Paris, France: Les Éditions de Minuit.

  • Beswick, K., Watson, A., & de Geest, E. (2010). Comparing theoretical perspectives in describing mathematics departments: complexity and activity. Educational Studies in Mathematics, 75, 153–170.

    Article  Google Scholar 

  • Black, L., Williams, J., Hernandez-Martinez, P., Davis, P., Pampaka, M., & Wake, G. (2010). Developing a “leading identity”: the relationship between students’ mathematical identities and their career and higher education aspirations. Educational Studies in Mathematics, 73, 55–72.

    Article  Google Scholar 

  • Brown, T. (2011). Mathematics education and subjectivity: Cultures and cultural renewal. Dordrecht: Springer.

    Book  Google Scholar 

  • Carlsen, M. (2009). Reasoning with paper and pencil: the role of inscriptions in student learning of geometric series. Mathematics Education Research Journal, 21, 54–84.

    Article  Google Scholar 

  • Carlsen, M. (2010). Appropriating geometric series as a cultural tool: a study of student collaborative learning. Educational Studies in Mathematics, 74, 95–116.

    Article  Google Scholar 

  • Cobb, P. (1999). Individual and collective mathematical development: the case of statistical data analysis. Mathematical Thinking and Learning, 1, 5–43.

    Article  Google Scholar 

  • Cobb, P., Yackel, E., & Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23, 2–33.

    Article  Google Scholar 

  • Corno, L., Cronbach, L. J., Kupermintz, H., Lohman, D. F., Mandinach, E. B., Porteus, A. W., et al. (2002). Remaking the concept of aptitude: Extending the legacy of Richard E. Snow. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • David, M. M., & Tomaz, V. S. (2011). The role of visual representations for structuring classroom mathematical activity. Educational Studies in Mathematics. doi:10.1007/s10649-011-9358-6.

  • Derrida, J. (1990). Le problème de la genèse dans la philosophie de Husserl. [The problem of genesis in the philosophy of Husserl]. Paris: Presses Universitaires de France.

    Google Scholar 

  • Eckert, P. (1989). Jocks and burnouts: Social categories and identity in the high school. New York: Teachers College Press.

    Google Scholar 

  • Falcade, R., Laborde, C., & Marlotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66, 317–333.

    Article  Google Scholar 

  • Fried, M. N. (2011). Signs for you and signs for me: the double aspect of semiotic perspectives. Educational Studies in Mathematics, 77, 389–397.

    Article  Google Scholar 

  • Holzkamp, K. (1993). Lernen: Subjektwissenschaftliche Grundlegung [Learning: A subject-scientific grounding]. Frankfurt: Campus.

    Google Scholar 

  • Husserl, E. (1939). Die Frage nach dem Ursprung der Geometrie als intentional-historisches Problem [The question of the origin of geometry as intentional-historical problem]. Revue Internationale de Philosophie, 1, 203–225.

    Google Scholar 

  • Il’enkov, E. (1982). Dialectics of the abstract and the concrete in Marx’s Capital. Moscow: Progress.

    Google Scholar 

  • Jurdak, M. E. (2006). Contrasting perspectives and performance of high school students on problem solving in real world situated, and school contexts. Educational Studies in Mathematics, 63, 283–301.

    Article  Google Scholar 

  • Lagrange, J.-B., & Erdogan, E. O. (2009). Teachers’ emergent goals in spreadsheet-based lessons: analyzing the complexity of technology integration. Educational Studies in Mathematics, 71, 65–84.

    Article  Google Scholar 

  • Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lave, J. (1993). The practice of learning. In S. Chaiklin & J. Lave (Eds.), Understanding practice: Perspectives on activity and context (pp. 3–32). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Leontjew, A. N. (1982). Tätigkeit, Bewusstsein, Persönlichkeit [Activity, consciousness, personality]. Köln: Pahl-Rugenstein.

    Google Scholar 

  • Leontyev, A. N. (1981). Problems of the development of the mind. Moscow: Progress.

    Google Scholar 

  • Livingston, E. (1986). The ethnomethodological foundations of mathematics. London: Routledge and Kegan Paul.

    Google Scholar 

  • Luria, A. (1973). The working brain. New York: Basic Books.

    Google Scholar 

  • Martin, D. B. (2007). Beyond missionaries or cannibals: why should teach mathematics to African American children? The High School Journal, 91(1), 6–28.

    Article  Google Scholar 

  • Marx, K., & Engels, F. (1962). Werke Band 23: Das Kapital [Works vol. 23: Capital]. Berlin, Germany: Dietz.

  • McDermott, R. P. (1993). The acquisition of a child by a learning disability. In S. Chaiklin & J. Lave (Eds.), Understanding practice: Perspectives on activity and context (pp. 269–305). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Meira, L., & Lerman, S. (2001). The zone of proximal development as a symbolic space. London: South Bank University.

    Google Scholar 

  • Merz, M., & Knorr-Cetina, K. (1997). Deconstruction in a “thinking” science: theoretical physicists at work. Social Studies of Science, 27, 73–111.

    Article  Google Scholar 

  • Mikhailov, F. T. (2001). The “other within” for the psychologist. Journal of Russian and East European Psychology, 39, 6–31.

    Article  Google Scholar 

  • Nancy, J.-L. (1993). Éloge de la mêlée. Transeuropéenne, 1, 8–18.

    Google Scholar 

  • Nancy, J.-L. (1996). Être singulier pluriel [Being singular plural]. Paris: Galilée.

    Google Scholar 

  • Núñez, R., Edwards, L., & Matos, J. F. (1999). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics, 39, 45–65.

    Article  Google Scholar 

  • Nyamekye, F. (2010). Embracing mathematics identity in an African-centered school: Construction and interaction of racial and mathematical student identities. Dissertation, University of Maryland. Accessed October 27, 2010 at http://drum.lib.umd.edu/bitstream/1903/10939/1/Nyamekye_umd_0117E_11602.pdf.

  • Ozmantar, M. F., & Monaghan, J. (2007). A dialectical approach to the formation of mathematical abstractions. Mathematics Education Research Journal, 19, 89–112.

    Article  Google Scholar 

  • Radford, L. (2008). The ethics of being and knowing: Towards a cultural theory of learning. In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom, and culture (pp. 215–234). Rotterdam: Sense.

    Google Scholar 

  • Radford, L. (2011a). Classroom interaction: why is it good, really? Educational Studies in Mathematics, 76, 101–115.

    Article  Google Scholar 

  • Radford, L. (2011b). Vers une théorie socioculturelle de l’enseignement—apprentissage: la théorie de l’objectivation. Éléments, 1, 1–27.

    Google Scholar 

  • Radford, L., & Puig, L. (2007). Syntax and meaning as sensuous, visual, historical forms of algebraic thinking. Educational Studies in Mathematics, 66, 145–164.

    Article  Google Scholar 

  • Radford, L., & Roth, W.-M. (2011). Beyond Kantian individualism: an activity perspective on classroom interaction. Educational Studies in Mathematics, 77, 227–245.

    Article  Google Scholar 

  • Radford, L., Schubring, G., & Seeger, F. (2011). Signifying and meaning-making in mathematical thinking, teaching, and learning. Educational Studies in Mathematics, 77, 149–156.

    Article  Google Scholar 

  • Rancière, J. (1999). Dis-agreement: Politics and philosophy. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Roth, W.-M. (2004). Activity theory in education: an introduction. Mind, Culture, & Activity, 11, 1–8.

    Article  Google Scholar 

  • Roth, W.-M. (2005). Mathematical inscriptions and the reflexive elaboration of understanding: an ethnography of graphing and numeracy in a fish hatchery. Mathematical Thinking and Learning, 7, 75–109.

    Article  Google Scholar 

  • Roth, W.-M. (2007). Emotion at work: a contribution to third-generation cultural historical activity theory. Mind, Culture and Activity, 14, 40–63.

    Article  Google Scholar 

  • Roth, W.-M. (2008). Where are the cultural-historical critiques of “back to the basics”? Mind, culture, and activity, 15, 269–278.

    Google Scholar 

  • Roth, W.-M. (2009). Learning in schools: A cultural-historical activity theoretic perspective. In B. Schwarz, T. Dreyfus, & R. Hershkovitz (Eds.), The guided construction of knowledge in classrooms (pp. 281–301). London: Routledge.

    Google Scholar 

  • Roth, W.-M. (2011). Rules of bending, bending rules: the geometry of conduit bending in college and workplace. Educational Studies in Mathematics.

  • Roth, W.-M., & Barton, A. C. (2004). Rethinking scientific literacy. New York: Routledge.

    Book  Google Scholar 

  • Roth, W.-M., & Hwang, S.-W. (2006). Does mathematical learning occur in going from concrete to abstract or in going from abstract to concrete? The Journal of Mathematical Behavior, 25, 334–344.

    Article  Google Scholar 

  • Roth, W.-M., & Lee, Y. J. (2007). “Vygotsky’s neglected legacy”: cultural-historical activity theory. Review of Educational Research, 77, 186–232.

    Article  Google Scholar 

  • Roth, W.-M., & Radford, L. (2010). Re/thinking the zone of proximal development (symmetrically). Mind, culture, and activity, 17, 299–307.

    Google Scholar 

  • Roth, W.-M., & Radford, L. (2011). A cultural-historical perspective on mathematics teaching and learning. Rotterdam: Sense Publishers.

    Book  Google Scholar 

  • Roth, W.-M., Lee, Y. J., & Boyer, L. (2008). The eternal return: Reproduction and change in complex activity systems. The case of salmon enhancement. Berlin: Lehmanns Media.

    Google Scholar 

  • Saxe, G. B. (1991). Culture and cognitive development: Studies in mathematical understanding. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Seeger, F. (2011). On making meaning in mathematics education: social, emotional, semiotic. Educational Studies in Mathematics, 77, 207–226.

    Article  Google Scholar 

  • Triantafillou, C., & Potari, D. (2010). Mathematical practices in a technological workplace: the role of tools. Educational Studies in Mathematics, 74, 275–294.

    Article  Google Scholar 

  • Valero, P., & Stentoft, D. (2010). The “post” move of critical mathematics education. In A. O. Ravn & P. Valero (Eds.), Critical mathematics education: Past, present, future (pp. 183–195). Rotterdam: Sense.

    Google Scholar 

  • von Glasersfeld, E. (1987). Learning as a constructive activity. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 3–17). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Vygotsky, L. S. (1997). The historical meaning of the crisis in psychology: A methodological investigation. In W. R. Rieber & J. Wollock (Eds.), The collected work of L. S. Vygotsky vol. 6 (pp. 233–343). New York: Kluwer Academic Publishers. First published in 1927.

    Google Scholar 

  • Vygotskij, L. S. (2002). Denken und Sprechen [Thought and language]. Weinheim: Beltz Verlag.

    Google Scholar 

  • Vygotskij, L. S. (2005). ПCИXOЛOГИЯ PAЗBИTИЯ ЧEЛOBEКA [Psychology of human development]. Moscow: Eksmo.

    Google Scholar 

  • Walkerdine, V. (1988). The mastery of reason. London: Routledge.

    Google Scholar 

  • Williams, J., & Wake, G. (2007). Black boxes in workplace mathematics. Educational Studies in Mathematics, 64, 317–343.

    Article  Google Scholar 

  • Williams, J., Davis, P., & Black, L. (2007). Subjectivities in school: socio-cultural and activity theory perspectives. International Journal of Educational Research, 46, 1–7.

    Article  Google Scholar 

  • Willis, P. (1977). Learning to labor: How working class lads get working class jobs. New York: Columbia University Press.

    Google Scholar 

  • Wittgenstein, L. (1997). Philosophische Untersuchungen / Philosophical investigations (2nd ed.). Oxford: Blackwell (First published in 1953).

    Google Scholar 

  • Zevenbergen, R., & Lerman, S. (2008). Learning environments using interactive whiteboards: new learning spaces or reproduction of old technologies. Mathematics Education Research Journal, 20, 108–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolff-Michael Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, WM. Cultural-historical activity theory: Vygotsky’s forgotten and suppressed legacy and its implication for mathematics education. Math Ed Res J 24, 87–104 (2012). https://doi.org/10.1007/s13394-011-0032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13394-011-0032-1

Keywords

Navigation