Skip to main content
Log in

An Ideal Two-Dimensional Porous B4O2 as Anode Material for Enhancing Ion Storage Performance

Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The utilization of two-dimensional porous materials as anodes in ion batteries has garnered significant interest within the field of clean energy because of their flexible architecture, high conductivity, rapid diffusion process and high specific ion capacity. Herein, we developed a new metal-free 2D porous compound, namely, B4O2. The stability of the B4O2 monolayer was verified through the ab-initio molecular dynamics simulations and phonon spectrum calculations. The results demonstrate that the adsorption of K, Na, and Li atoms onto the B4O2 monolayer surface is remarkably stable, with all three species exhibiting a shared diffusion path. Specifically, we found that the adsorption of K atoms on the B4O2 monolayer surpasses that of Na and Li atoms, and the diffusion of K atoms occurs at a faster rate than Na and Li atoms on the same monolayer surface. The maximum theoretical specific capacity of K+, Na+ and Li+ is calculated to be 626.1 mAh/g. In addition, the B4O2 monolayer retains good electronic conductivity and electron activity during the atomic adsorption processes. Based on our findings, the B4O2 monolayer exhibits significant potential as anode material for ion batteries. This study paves the way for a novel approach in designing new 2D porous materials specifically tailored for energy storage and conversion applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Hong, X., Wang, R., Liu, Y., Fu, J., Liang, J., Dou, S.: Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries. J. Energy Chem. 42, 144–168 (2020). https://doi.org/10.1016/j.jechem.2019.07.001

    Article  Google Scholar 

  2. Román-Ramírez, L., Marco, J.: Design of experiments applied to lithium-ion batteries: A literature review. Appl. Energy 320, 119305 (2022). https://doi.org/10.1016/j.apenergy.2022.119305

    Article  CAS  Google Scholar 

  3. Kanimozhi, G., Naresh, N., Kumar, H., Satyanarayana, N.: Review on the recent progress in the nanocomposite polymer electrolytes on the performance of lithium-ion batteries. Int. J. Energy Res. 46(6), 7137–7174 (2022). https://doi.org/10.1002/er.7740

    Article  CAS  Google Scholar 

  4. Evarts, E.C.: Lithium batteries: To the limits of lithium. Nature 526(7575), S93–S95 (2015). https://doi.org/10.1038/526s93a

    Article  CAS  Google Scholar 

  5. Lim, Y.E., Choi, W.S., Kim, J.H., Ahn, Y.N., Kim, I.T.: The Sn–red P-Fe–based alloy materials for efficient Li–ion battery anodes. J. Ind. Eng. Chem. (2023). https://doi.org/10.1016/j.jiec.2023.01.033

    Article  Google Scholar 

  6. Khan, M.I., Nadeem, G., Majid, A., Shakil, M.: A DFT study of bismuthene as anode material for alkali-metal (Li/Na/K)-ion batteries. Mater. Sci. Eng., B 266, 115061 (2021). https://doi.org/10.1016/j.mseb.2021.115061

    Article  CAS  Google Scholar 

  7. Zhang, L., Wang, W., Lu, S., Xiang, Y.: Carbon anode materials: a detailed comparison between Na-ion and K-ion batteries. Adv. Energy Mater. 11(11), 2003640 (2021)

    Article  CAS  Google Scholar 

  8. Butt, M.K., Rehman, J., Yang, Z., Wang, S., El-Zatahry, A., Alofi, A.S.: Storage of Na in 2D SnS for Na ion batteries a DFT prediction. Phys Chem Chem Phys 24(48), 29609–29615 (2022). https://doi.org/10.1039/d2cp02780a

    Article  CAS  Google Scholar 

  9. Chen, H., Lv, P., Liu, Q., Tian, P., Cao, S., Yuan, S.: Bonding iron chalcogenides in a hierarchical structure for high-stability sodium storage. J. Colloid Interface Sci. (2023). https://doi.org/10.1016/j.jcis.2023.01.056

    Article  Google Scholar 

  10. Wu, S., Feng, Y., Jiang, W., Wu, K., Guo, Z., Xiong, D., He, M.: Reduced graphene oxide coated modified SnO2 forms excellent potassium storage properties. Ceramics Int (2023). https://doi.org/10.1016/j.ceramint.2023.01.168

    Article  Google Scholar 

  11. Schaibley, J.R., Yu, H., Clark, G., Rivera, P., Ross, J.S., Seyler, K.L., Xu, X.: Valleytronics in 2D materials. Nat Rev Mater 1(11), 1–15 (2016). https://doi.org/10.1038/natrevmats.2016.55

    Article  CAS  Google Scholar 

  12. Deng, D., Novoselov, K., Fu, Q., Zheng, N., Tian, Z., Bao, X.: Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11(3), 218–230 (2016). https://doi.org/10.1038/nnano.2015.340

    Article  CAS  Google Scholar 

  13. Mao, J., Zhou, T., Zheng, Y., Gao, H.: Two-dimensional nanostructures for sodium-ion battery anodes. J Mater Chem A 6(8), 3284–3303 (2018). https://doi.org/10.1039/c7ta10500b

    Article  CAS  Google Scholar 

  14. Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photonics 8(12), 899–907 (2014). https://doi.org/10.1038/nphoton.2014.271

    Article  CAS  Google Scholar 

  15. Zhong, C., Wu, W., He, J., Ding, G., Liu, Y., Li, D., Zhang, G.: Two-dimensional honeycomb borophene oxide: strong anisotropy and nodal loop transformation. Nanoscale 11(5), 2468–2475 (2019). https://doi.org/10.1039/C8NR08729F

    Article  CAS  Google Scholar 

  16. Zhong, C., Feng, C.: An ideal two-dimensional nodal-ring semimetal in tetragonal borophene oxide. Phys. Chem. Chem. Phys. 23(32), 17348–17353 (2021). https://doi.org/10.1039/D1CP02003J

    Article  CAS  Google Scholar 

  17. Lin, S., Guo, Y., Xu, M., Zhao, J., Liang, Y., Yuan, X., Li, Y.: AB 2 N monolayer: a direct band gap semiconductor with high and highly anisotropic carrier mobility. Nanoscale 14(3), 930–938 (2022)

    Article  CAS  Google Scholar 

  18. Gao, S., Wei, F., Jia, B., Chen, C., Wu, G., Hao, J., Lu, P.: Two-dimensional van der Waals layered VSi2N4 as anode materials for alkali metal (Li, Na and K) ion batteries. J Phys Chem Solid 178, 111339 (2023)

    Article  CAS  Google Scholar 

  19. Kasprzak, G.T., Szczesniak, R., Durajski, A.P.: Computational insight into bilayer NC7 anode material for Li/Na/Mg-ion batteries. Comput. Mater. Sci. 225, 112194 (2023)

    Article  CAS  Google Scholar 

  20. Wang, S., Wu, Y., Ye, X., Sun, S.: Predict low energy structures of BSi monolayer as high-performance Li/Na/K ion battery anode. Appl. Surf. Sci. 609, 155222 (2023). https://doi.org/10.1016/j.apsusc.2022.155222

    Article  CAS  Google Scholar 

  21. Wang, Y., Li, Y.: Ab initio prediction of two-dimensional Si3C enabling high specific capacity as an anode material for Li/Na/K-ion batteries. J Mater Chem A 8(8), 4274–4282 (2020). https://doi.org/10.1039/c9ta11589g

    Article  CAS  Google Scholar 

  22. Zhou, Y., Zhao, M., Chen, Z.W., Shi, X.M., Jiang, Q.: Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries. Phys. Chem. Chem. Phys. 20(48), 30290–30296 (2018). https://doi.org/10.1039/c8cp05484c

    Article  CAS  Google Scholar 

  23. Yang, M., Kong, F., Chen, L., Tian, B., Guo, J.: Potential application of two-dimensional PC6 monolayer as an anode material in alkali metal-ion (Li, Na, K) batteries. Thin Solid Films (2023). https://doi.org/10.1016/j.tsf.2023.139734

    Article  Google Scholar 

  24. Xia, X., Yin, H., Zhang, Y., Huang, S.: Boron-doped g-CN monolayer as a promising anode for Na/K-ion batteries. Surf Interf 36, 102479 (2023). https://doi.org/10.1016/j.surfin.2022.102479

    Article  CAS  Google Scholar 

  25. Wang, Z.-Q., Lü, T.-Y., Wang, H.-Q., Feng, Y.P., Zheng, J.-C.: Review of borophene and its potential applications. Front. Phys. 14, 1–20 (2019)

    Article  Google Scholar 

  26. Xie, S.-Y., Wang, Y., Li, X.-B.: Flat boron: a new cousin of graphene. Adv. Mater. 31(36), 1900392 (2019)

    Article  Google Scholar 

  27. Li, D., Gao, J., Cheng, P., He, J., Yin, Y., Hu, Y., Zhao, J.: 2D boron sheets: structure, growth, and electronic and thermal transport properties. Adv Funct Mater 30(8), 1904349 (2020)

    Article  CAS  Google Scholar 

  28. Wang, Q., Fan, G., Xu, H., Tu, X., Wang, X., Chu, X.: C-doped boron nitride nanotubes for the catalysis of acetylene hydrochlorination: a density functional theory study. Mol Cataly 488, 110853 (2020)

    Article  CAS  Google Scholar 

  29. Wu, X., Dai, J., Zhao, Y., Zhuo, Z., Yang, J., Zeng, X.C.: Two-dimensional boron monolayer sheets. ACS nano 6(8), 7443–7453 (2012)

    Article  CAS  Google Scholar 

  30. Feng, B., Zhang, J., Liu, R.-Y., Iimori, T., Lian, C., Li, H.: Direct evidence of metallic bands in a monolayer boron sheet. Phys Rev B 94(4), 041408 (2016)

    Article  Google Scholar 

  31. Mu, Y., Chen, Q., Chen, N., Lu, H., Li, S.-D.: A novel borophene featuring heptagonal holes: a common precursor of borospherenes. Phys. Chem. Chem. Phys. 19(30), 19890–19895 (2017)

    Article  CAS  Google Scholar 

  32. Zhou, X.-F., Oganov, A.R., Wang, Z., Popov, I.A., Boldyrev, A.I., Wang, H.-T.: Two-dimensional magnetic boron. Phys Rev B 93(8), 085406 (2016)

    Article  Google Scholar 

  33. Tkachenko, N.V., Steglenko, D., Fedik, N., Boldyreva, N.M., Minyaev, R.M., Minkin, V.I., Boldyrev, A.I.: Superoctahedral two-dimensional metallic boron with peculiar magnetic properties. Phys. Chem. Chem. Phys. 21(36), 19764–19771 (2019)

    Article  CAS  Google Scholar 

  34. Penev, E.S., Kutana, A., Yakobson, B.I.: Can two-dimensional boron superconduct? Nano Lett. 16(4), 2522–2526 (2016)

    Article  CAS  Google Scholar 

  35. Gao, M., Li, Q.-Z., Yan, X.-W., Wang, J.: Prediction of phonon-mediated superconductivity in borophene. Phys. Rev. B 95(2), 024505 (2017)

    Article  Google Scholar 

  36. Zhao, Y., Zeng, S., Ni, J.: Superconductivity in two-dimensional boron allotropes. Phys. Rev. B 93(1), 014502 (2016)

    Article  Google Scholar 

  37. Feng, B., Zhang, J., Ito, S., Arita, M., Cheng, C., Chen, L.: Discovery of 2D anisotropic Dirac cones. Adv. Mater. 30(2), 1704025 (2018)

    Article  Google Scholar 

  38. Zhang, H., Xie, Y., Zhang, Z., Zhong, C., Li, Y., Chen, Z., Chen, Y.: Dirac nodal lines and tilted semi-Dirac cones coexisting in a striped boron sheet. J Phys Chem Lett 8(8), 1707–1713 (2017)

    Article  CAS  Google Scholar 

  39. Mannix, A.J., Kiraly, B., Hersam, M.C., Guisinger, N.P.: Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1(2), 0014 (2017)

    Article  CAS  Google Scholar 

  40. Gao, B., Gao, P., Lu, S., Lv, J., Wang, Y., Ma, Y.: Interface structure prediction via CALYPSO method. Sci Bull 64(5), 301–309 (2019). https://doi.org/10.1016/j.scib.2019.02.009

    Article  CAS  Google Scholar 

  41. Wang, Y., Lv, J., Zhu, L., Ma, Y.: CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 183(10), 2063–2070 (2012). https://doi.org/10.1016/j.cpc.2012.05.008

    Article  CAS  Google Scholar 

  42. Wang, Y., Lv, J., Zhu, L., Ma, Y.: Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82(9), 094116 (2010). https://doi.org/10.1103/PhysRevB.82.094116

    Article  CAS  Google Scholar 

  43. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965). https://doi.org/10.1103/physrev.140.a1133

    Article  Google Scholar 

  44. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys Rev 136(3B), B864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  45. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  Google Scholar 

  46. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495

    Article  CAS  Google Scholar 

  47. Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672

    Article  CAS  Google Scholar 

  48. Sheppard, D., Terrell, R., Henkelman, G.: Optimization methods for finding minimum energy paths. J. Chem. Phys. 128(13), 134106 (2008). https://doi.org/10.1063/1.2841941

    Article  CAS  Google Scholar 

  49. Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978–9985 (2000). https://doi.org/10.1063/1.1323224

    Article  CAS  Google Scholar 

  50. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511–519 (1984). https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  51. Hoover, W.G.: Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985). https://doi.org/10.1103/physreva.31.1695

    Article  CAS  Google Scholar 

  52. Wang, V., Xu, N., Liu, J.-C., Tang, G., Geng, W.-T.: VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033

    Article  CAS  Google Scholar 

  53. Peng, C., Mercer, M.P., Skylaris, C.-K., Kramer, D.: Lithium intercalation edge effects and doping implications for graphite anodes. J Mater Chem A 8(16), 7947–7955 (2020)

    Article  CAS  Google Scholar 

  54. Ma, Y., Xu, S., Fan, X., Singh, D.J., Zheng, W.: Adsorption of K Ions on Single-Layer GeC for Potential Anode of K Ion Batteries. Nanomaterials 11(8), 1900 (2021). https://doi.org/10.3390/nano11081900

    Article  CAS  Google Scholar 

  55. Yadav, N., Chakraborty, B., Kumar, T.D.: First-principles study of a 2-dimensional C-silicyne monolayer as a promising anode in Na/K ion secondary batteries. Phys. Chem. Chem. Phys. 23(20), 11755–11763 (2021)

    Article  CAS  Google Scholar 

  56. Jiang, H., Shyy, W., Liu, M., Wei, L., Wu, M., Zhao, T.: Boron phosphide monolayer as a potential anode material for alkali metal-based batteries. J Mater Chem A 5(2), 672–679 (2017). https://doi.org/10.1039/c6ta09264k

    Article  CAS  Google Scholar 

  57. Lv, X., Li, F., Gong, J., Gu, J., Lin, S., Chen, Z.: Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Phys. Chem. Chem. Phys. 22(16), 8902–8912 (2020). https://doi.org/10.1039/d0cp00967a

    Article  CAS  Google Scholar 

  58. Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 1–17 (2017). https://doi.org/10.1038/natrevmats.2016.98

    Article  CAS  Google Scholar 

  59. Winter, M.: J. 0. Besenhard, ME Spahr and P. Novak. Adv. Mater 10, 725–763 (1998)

    Article  CAS  Google Scholar 

  60. Persson, K., Sethuraman, V.A., Hardwick, L.J., Hinuma, Y., Meng, Y.S., Van Der Ven, A., Ceder, G.: Lithium diffusion in graphitic carbon. J Phys Chem Lett 1(8), 1176–1180 (2010)

    Article  CAS  Google Scholar 

  61. Lunell, S., Stashans, A., Ojamäe, L., Lindström, H., Hagfeldt, A.: Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J. Am. Chem. Soc. 119(31), 7374–7380 (1997)

    Article  CAS  Google Scholar 

  62. Olson, C.L., Nelson, J., Islam, M.S.: Defect chemistry, surface structures, and lithium insertion in anatase TiO2. J. Phys. Chem. B 110(20), 9995–10001 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the start-up funding at Chengdu University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengyong Zhong or Shuo Li.

Ethics declarations

Competing Interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 866 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Luo, Y., Wang, Z. et al. An Ideal Two-Dimensional Porous B4O2 as Anode Material for Enhancing Ion Storage Performance. Electron. Mater. Lett. (2023). https://doi.org/10.1007/s13391-023-00465-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-023-00465-w

Keywords

Navigation