Skip to main content
Log in

Direct Fabrication of Vertically Stacked Double Barrier Tunnel Junctions Based on Graphene and h-BN

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Direct manufacturing of two-dimensional material-based double barrier (DB) tunnel junctions, based on a lithography-free approach was developed. Graphene/h-BN/Graphene/h-BN/Graphene devices were deposited on Si/SiO2 substrates by employing a plasma enhanced chemical vapor deposition technique in a sequential manner. DB tunneling junctions with varying barrier widths (by varying the thickness of the second graphene layer) were studied. Samples were characterized using Raman, Atomic Force Microscopy and X-ray photoemission spectroscopy. The I–V characteristics of tunneling current showed resonant tunneling behavior at room temperature with a negative differential conductance. The behavior could be explained with quantum mechanical double barrier tunneling model in which analytic solutions to Schrödinger’s equation were obtained in each region of the system. Resonances in transmission probability coefficient for varying barrier widths were evaluated and compared with the experimental results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ajayan, P., Kim, P., Banerjee, K.: Two-dimensional van der Waals materials. Phys. Today 69, 38 (2016). https://doi.org/10.1063/PT.3.3297

    Article  CAS  Google Scholar 

  2. Wang, J., Ma, F., Liang, W., Sun, M.: Surface/edge functionalized boron nitride quantum dots: spectroscopic fingerprint of bandgap modification by chemical functionalization. RSC Adv. 2, 634 (2017)

    Google Scholar 

  3. Kang, S., Lee, D., Kim, J., Capasso, A., Kang, H.S., Park, J.W., Lee, C.H., Lee, G.H.: 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge. 2D Mater. 7, 022003 (2020)

    Article  CAS  Google Scholar 

  4. Panin, G.N.: Optoelectronic dynamic memristor systems based on two-dimensional crystals. Chaos. Solit. Fractals 142, 110523 (2021)

    Article  Google Scholar 

  5. Liu, K., Yan, Q., Chen, M., Fan, W., Sun, Y., Suh, J., Fu, D., Lee, S., Zhou, J., Tongay, S.: Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14, 5097–5103 (2014)

    Article  CAS  Google Scholar 

  6. Yadav, S.K., Nandigana, V.V., Nayak, P.K.: Sequential growth of two-dimensional MoSe2-WSe2 lateral heterojunctions: AIP Conference Proceedings, AIP Publishing LLC, 030699 (2020)

  7. Iannaccone, G., Bonaccorso, F., Colombo, L., et al.: Quantum engineering of transistors based on 2D materials heterostructures. Nature Nanotech 13, 183–191 (2018). https://doi.org/10.1038/s41565-018-0082-6

    Article  CAS  Google Scholar 

  8. Sangwan, V.K., Hersam, M.C.: Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 69, 299–325 (2018)

    Article  CAS  Google Scholar 

  9. Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Katsnelson, M.I., Eaves, L., Morozov, S.V., Mayorov, A.S., Peres, N.: Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012)

    Article  CAS  Google Scholar 

  10. Thompson, L.F.: An introduction to lithography, ACS Symposium Series, vol. 219, pp. 1–13. American Chemical Society, Washington (1983)

    Google Scholar 

  11. Watt, F., Bettiol, A., Van Kan, J., Teo, E.J., Breese: Ion beam lithography and nanofabrication: a review. Int. J. Nanosci. 4, 269–286 (2005)

    Article  CAS  Google Scholar 

  12. Alruqi, A.: Doctoral Dissertation 2D materials based heterostructures: a lithography free method, University of Louisville, (2019)

  13. Tabe, M., Tan, H.N., Mizuno, T., Muruganathan, M., Anh, L.T., Mizuta, H., Nuryadi, R., Moraru, D.: Atomistic nature in band-to-band tunneling in two-dimensional silicon p-n tunnel diodes. Appl. Phys. Lett. 108, 093502 (2016). https://doi.org/10.1063/1.4943094

    Article  CAS  Google Scholar 

  14. Zeng, X., Otnes, G., Heurlin, M., et al.: InP/GaInP nanowire tunnel diodes. Nano Res. 11, 2523–2531 (2018). https://doi.org/10.1007/s12274-017-1877-8

    Article  CAS  Google Scholar 

  15. Ulansky, V., Raza, A., Oun, H.J.E.: Electronic circuit with controllable negative differential resistance and its applications. Electronics 8, 409 (2019)

    Article  Google Scholar 

  16. Qiu, W., Peng, J., Pan, M., Hu, Y., Ji, M., Hu, J., Tian, W., Chen, D., Zhang, Q., Li, J.: Spin-dependent resonant tunneling and magnetoresistance in Ni/graphene/h-BN/graphene/Ni van der Waals heterostructures. J. Magn. Magn. Mater. 476, 622–627 (2019)

    Article  CAS  Google Scholar 

  17. Ladugin, M.A., Yarotskaya, I.V., Bagaev, T.A., Telegin, K.Y., Andreev, A.Y., Zasavitskii, I.I., Padalitsa, A.A., Marmalyuk, A.A.: Advanced AlGaAs/GaAs heterostructures grown by MOVPE. Curr. Comput.-Aided Drug Des. 9, 305 (2019). https://doi.org/10.3390/cryst9060305

    Article  CAS  Google Scholar 

  18. Alzahrani, A., Alruqi, A., Karki, B., Kalutara Koralalage, M., Jasinski, J., Sumanasekera, G.U.: Direct fabrication and characterization of vertically stacked graphene/h-BN/graphene tunnel junctions. Nano Ex. 2, 040010 (2021). https://doi.org/10.1088/2632-959X/ac2e9e

    Article  Google Scholar 

  19. de la Barrera, S.C., Feenstra, R.M.: Theory of resonant tunneling in bilayer graphene/hexagonal-boron-nitride heterostructures. Appl. Phys. Lett. 106, 093115 (2015). https://doi.org/10.1063/1.4914324

    Article  CAS  Google Scholar 

  20. Campbell, P.M., Tarasov, A., Joiner, C.A., Ready, W.J., Vogel, E.M.: Band structure effects on resonant tunneling in III-V quantum wells versus twodimensional vertical heterostructures. J. Appl. Phys. 119, 024503 (2016)

    Article  Google Scholar 

  21. Sroczyńska, M., Wasak, T., Idziaszek, Z.J.A.P.A.: Analytically solvable quasi-one-dimensional Kronig-Penney model. Arxiv Quan. Phys. (2020). https://doi.org/10.48550/arXiv.2006.00580

    Article  Google Scholar 

  22. Morita, I., Ishikawa, F., Honda, A., Sato, D., Koizumi, A., Nishitani, T., Tabuchi, M.J.: “AlGaAs/GaAs superlattice photocathode grown by molecular beam epitaxy: correspondence between room temperature photoluminescence and quantum efficiency. Jpn. J. Appl. Phys. 60, SBBK02 (2021)

    Article  CAS  Google Scholar 

  23. Mompó, E., Carretero, M., Bonilla, L.J.: “Designing hyperchaos and intermittency in semiconductor superlattices. Phys. Rev. Lett. 127, 096601 (2021)

    Article  Google Scholar 

  24. Corbella, C., Sánchez, O., Albella, J.: Plasma-enhanced chemical vapor deposition of thin films, pp. 17–53. Jenny Stanford Publishing, New York (2022)

    Google Scholar 

  25. Zhao, R., Ahktar, M., Alruqi, A., Dharmasena, R., Jasinski, J.B., Thantirige, R.M., Sumanasekera, G.U.: Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition. Mater. Res. Express 4, 055007 (2017)

    Article  Google Scholar 

  26. Wang, H., Zhao, Y., Xie, Y., Ma, X., Zhang, X.J.: Recent progress in synthesis of two-dimensional hexagonal boron nitride*. J. Semicond. 38, 031003 (2017)

    Article  Google Scholar 

  27. Babenko, V., Lane, G., Koos, A.A., et al.: Time dependent decomposition of ammonia borane for the controlled production of 2D hexagonal boron nitride. Sci. Rep. 7, 14297 (2017). https://doi.org/10.1038/s41598-017-14663-8

    Article  CAS  Google Scholar 

  28. Koepke, J.C., Wood, J.D., Chen, Y., Schmucker, S.W., Liu, X., Chang, N.N., Nienhaus, L., Do, J.W., Carrion, E.A., Hewaparakrama, J.: Role of pressure in the growth of hexagonal boron nitride thin films from ammonia-borane. Chem. Mater. 28, 4169–4179 (2016)

    Article  CAS  Google Scholar 

  29. Tsuchiya, M., Sakaki, H.: Dependence of resonant tunneling current on well widths in AlAs/GaAs/AlAs double barrier diode structures. Appl. Phys. Lett. 49, 88–90 (1986)

    Article  CAS  Google Scholar 

  30. Wu, J.-B., Lin, M.-L., Cong, X., Liu, H.-N., Tan, P.H.: Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822–1873 (2018)

    Article  CAS  Google Scholar 

  31. Cartamil-Bueno, S.J., Cavalieri, M., Wang, R., et al.: Mechanical characterization and cleaning of CVD single-layer h-BN resonators. npi 2D Mater. Appl. 1, 16 (2017). https://doi.org/10.1038/s41699-017-0020-8

    Article  Google Scholar 

  32. Dresselhaus, M.S., Jorio, A., Souza Filho, A.G., Saito, R.: Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. Royal Soc. A 368(1932), 5355–5377 (2010)

    Article  CAS  Google Scholar 

  33. Yang, C., Bi, H., Wan, D., Huang, F., Xie, X., Jiang, M.: Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. J. Mater. Chem. A 1(3), 770–775 (2013)

    Article  CAS  Google Scholar 

  34. Alruqi, A., Musa, R.K., Rong, R., Zhang, C., Jasinski, J.B., Yu, M., Sumanasekera, G.U.: Layer dependent hydrazine adsorption properties in few-layer WS2. J. Phys. Chem. C 123(20), 13167–13173 (2019)

    Article  CAS  Google Scholar 

  35. Britnell, L., Gorbachev, R., Geim, A., et al.: Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013). https://doi.org/10.1038/ncomms2817

    Article  CAS  Google Scholar 

  36. Brown, E. R.: Resonant tunneling in high-speed double barrier. Hot Carriers in Semiconductor Nanostructures: Physics and Applications 469 (2012)

  37. Khondker, A., Khan, M.R., Anwar, A.J.: Transmission line analogy of resonance tunneling phenomena: the generalized impedance concept. J. Appl. Phys. 63, 5191–5193 (1988)

    Article  Google Scholar 

  38. Perumbil, M.: Doctoral Dissertation, Tunnelling dynamics of a Bose-Einstein condensate through single and double barriers. The Australian National University, Australia (2020)

  39. Thanikasalam, P., Venkat, R., Cahay, M.: Analytical expressions for tunneling time through single and double barrier structures. IEEE J. Quantum Electron. 29(9), 2451–2458 (1993). https://doi.org/10.1109/3.247702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0019348. We also acknowledge the financial support provided by the Umm Al-Qura University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AA, MKK, JJ and GS. The first draft of the manuscript was written by AA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali Alzahrani.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Data Availability

Data analyzed during this study will be available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrani, A., Kalutara Koralalage, M., Jasinski, J. et al. Direct Fabrication of Vertically Stacked Double Barrier Tunnel Junctions Based on Graphene and h-BN. Electron. Mater. Lett. 18, 313–320 (2022). https://doi.org/10.1007/s13391-022-00342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00342-y

Keywords

Navigation