Skip to main content
Log in

Improving Dielectric Properties in Novel P(VDF-HFP)/V2AlC MAX/Montmorillonite Composite Films via Interfacial Electric-Leakage Depressing Strategy

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Dielectric constants of polymer/conductor composites are often high, owing to strong interface interaction in those composites. They can be used for dielectric energy storage, but they usually have high dielectric loss and conductivity. In order to reduce the dielectric loss and conductivity in poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP))/V2AlC MAX composites, in this study, we explored the novel P(VDF-HFP)/V2AlC MAX/montmorillonite (MMT) ternary composites. Compared with binary composites, the ternary composites showed the mildly reduced dielectric constant, significantly decreased dielectric loss and conductivity. Using highly-conductive V2AlC MAX filler aimed at taking advantage of the polymer/MAX interface polarization to increase the dielectric response of composites. Employing well-insulating MMT filler aimed at reducing the interface electric leakage conduction. At 1 kHz, the outstanding ternary composite with 2 wt% MMT and 20 wt% MAX could exhibit a high dielectric constant of ca. 27 and low dielectric loss of ca. 0.21. This work might offer a new research idea for the construction of high-performance composite dielectric films containing modern MAX ceramic fillers.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barton, J.P., Infield, D.G.: Energy storage and its use with intermittent renewable energy. IEEE Trans. Energy Conver. 19, 441–448 (2004)

    Article  Google Scholar 

  2. Chen, X., Li, C., Grätzel, M.L., Kostecki, R., Mao, S.S.: Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 7909–7937 (2012)

    Article  CAS  Google Scholar 

  3. Mcmeeking, R.M., Landis, C.M.: Electrostatic forces and stored energy for deformable dielectric materials. J. Appl. Mech. 72, 581–590 (2005)

    Article  Google Scholar 

  4. Li, Q., Chen, L., Gadinski, M.R., Zhang, S., Zhang, G., Li, H., Haque, A., Chen, L., Jackson, T.N., Wang, Q.: Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015)

    Article  CAS  Google Scholar 

  5. Cortes, F.J.Q., Phillips, J.: Tube-super dielectric materials: electrostatic capacitors with energy density greater than 200 J·cm– 3. Materials 8, 6208–6227 (2015)

    Article  CAS  Google Scholar 

  6. Li, X., Chen, X., Sun, J., Zhou, M., Zhou, H.: Novel lead-free ceramic capacitors with high energy density and fast discharge performance. Ceram. Int. 46, 3426–3432 (2020)

    Article  CAS  Google Scholar 

  7. Kong, L.B., Li, S., Zhang, T., Zhai, J., Boey, F.Y.C., Ma, J.: Electrically tunable dielectric materials and strategies to improve their performances. Prog. Mater Sci. 55, 840–893 (2010)

    Article  CAS  Google Scholar 

  8. Zhang, Y., Chi, Q., Liu, L., Zhang, T., Zhang, C., Chen, Q., Wang, X., Lei, Q.: PVDF-based dielectric composite films with excellent energy storage performances by design of nanofibers composition gradient structure. ACS Appl. Energ. Mater. 1, 6320–6329 (2018)

    Article  Google Scholar 

  9. Li, W., Zhou, D., Pang, L., Xu, R., Guo, H.: Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A 5, 19607–19612 (2017)

    Article  CAS  Google Scholar 

  10. Wang, G., Huang, X., Jiang, P.: Tailoring dielectric properties and energy density of ferroelectric polymer nanocomposites by high-k nanowires. ACS Appl. Mater. Interfaces 7, 18017–18027 (2015)

    Article  CAS  Google Scholar 

  11. Feng, R., Li, L., Ou, W., Song, S., Zhang, Y., Xiong, C., Dong, L.: High-energy-density flexible dielectric film via one-step extrusion processing. ACS Appl. Polym. Mater. 1, 664–671 (2019)

    Article  CAS  Google Scholar 

  12. Yamada, T., Ueda, T., Kitayama, T.: Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53, 4328–4332 (1982)

    Article  CAS  Google Scholar 

  13. Yang, Y., Sun, C., Deng, H., Fu, Q.: Ni(OH)2 as an novel shell layer material for core-shell dielectric filler based on barium titanate and their dielectric polymer composites in P(VDF-HFP) matrix. Compos. Sci. Technol. 198, 108274 (2020)

    Article  CAS  Google Scholar 

  14. Sun, C., Deng, H., Ji, W., Zhou, H., Fu, Q.: The effect of multilayered film structure on the dielectric properties of composites films based on P(VDF-HFP)/Ni(OH)2. Nanocomposites 5, 36–48 (2019)

    Article  CAS  Google Scholar 

  15. Nisa, V.S., Rajesh, S., Murali, K.P., Priyadarsini, V., Potty, S.N., Ratheesh, R.: Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Compos. Sci. Technol. 68, 106–112 (2008)

    Article  CAS  Google Scholar 

  16. Wei, J., Zhu, L.: Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 106, 101254 (2020)

    Article  CAS  Google Scholar 

  17. Xu, D., Li, Z., Li, L., Wang, J.: Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202000712

    Article  Google Scholar 

  18. Wang, Z., Li, X., Zhou, J., Liu, P., Huang, Q., Ke, P., Wang, A.: Microstructure evolution of V–Al–C coatings synthesized from a V2AlC compound target after vacuum annealing treatment. J. Alloys Compd. 661, 476–482 (2016)

    Article  CAS  Google Scholar 

  19. Magnuson, M., Mattesini, M.: Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 621, 108–130 (2017)

    Article  CAS  Google Scholar 

  20. Ranaweera, A.U., Bandara, H.M.N., Rajapakse, R.M.G.: Electronically conducting montmorillonite-Cu2S and montmorillonite-Cu2S-polypyrrole nanocomposites. Electrochim. Acta 52, 7203–7209 (2007)

    Article  CAS  Google Scholar 

  21. Shikinaka, K., Aizawa, K., Fujii, N., Osada, Y., Tokita, M., Watanabe, J., Shigehara, K.: Flexible, transparent nanocomposite film with a large clay component and ordered structure obtained by a simple solution-casting method. Langmuir 26, 12493–12495 (2010)

    Article  CAS  Google Scholar 

  22. Popielarz, R., Chiang, C.K., Nozaki, R., Obrzut, J.: Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz. Macromolecules 34, 5910–5915 (2001)

    Article  CAS  Google Scholar 

  23. Hadi, M.A.: Superconducting phases in a remarkable class of metallic ceramics. J. Phys. Chem. Solids 138, 109275 (2020)

    Article  CAS  Google Scholar 

  24. Huang, J., Zheng, H., Chen, Z., Gao, Q., Ma, N., Du, P.: Percolative ceramic composites with giant dielectric constants and low dielectric losses. J. Mater. Chem. 19, 3909–3913 (2009). https://doi.org/10.1039/B820815H

    Article  CAS  Google Scholar 

  25. Chen, I.C., Teng, C., Coleman, D., Nishimura, A.: Interface trap-enhanced gate-induced leakage current in MOSFET. IEEE Electron. Device Lett. 10, 216–218 (1989)

    Article  Google Scholar 

  26. Dissado, L.A., Fothergill, J.C., Wise, N., Cooper, J.: A deterministic model for branched structures in the electrical breakdown of solid polymeric dielectrics. J. Phys. D: Appl. Phys. 33, L109 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 51502309), Science and Technology Research Program of Chongqing Municipal Education Commission (Grant Numbers KJQN201901417 and KJQN201801409) and Support Programme for Growth of Young Scientific Research Talents of Yangtze Normal University (Grant Number 0107/010721064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qihuang Deng or Yefeng Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Zhou, J., Ding, H. et al. Improving Dielectric Properties in Novel P(VDF-HFP)/V2AlC MAX/Montmorillonite Composite Films via Interfacial Electric-Leakage Depressing Strategy. Electron. Mater. Lett. 17, 54–62 (2021). https://doi.org/10.1007/s13391-020-00256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00256-7

Keywords

Navigation