Effects of Low-Temperature GeSn Buffer Layers on Sn Surface Segregation During GeSn Epitaxial Growth


We investigate the effects of the low-temperature (LT) GeSn buffer layers on Sn surface segregation during the growth of the additional GeSn layers. Sn surface segregation was observed in the GeSn layers formed on Si substrates at the growth temperature of 300 °C. However, there was no Sn surface segregation in the GeSn layers grown at 300 °C on the LT GeSn buffer layers formed at 225 °C. The Sn surface segregation was limited by the effects of the LT buffer layers. Crystallinity of the GeSn layers grown at 300 °C on the LT GeSn buffer layers was investigated by Raman spectroscopy. The full width at half maximum of the Ge–Ge Raman spectrum obtained from the GeSn layers was about 3.1 cm−1, which means that the formed GeSn layers have excellent crystallinity. We have successfully demonstrated that the LT GeSn buffer layers can limit the Sn surface segregation, which increases the growth temperature and improves crystallinity of the GeSn layers.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Chen, R., Gupta, S., Huang, Y.C., Huo, Y., Rudy, C.W., Sanchez, E., Kim, Y., Kamins, T.I., Saraswat, K.C., Harris, J.S.: Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics. Nano Lett. 14, 37–43 (2014)

    CAS  Article  Google Scholar 

  2. 2.

    Wirths, S., Geiger, R., von den Driesch, N., Mussler, G., Stoica, T., Mantl, S., Ikonic, Z., Luysberg, M., Chiussi, S., Hartmann, J.M., Sigg, H., Faist, J., Buca, D., Grützmacher, D.: Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photonics 9, 88–92 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    Schwartz, B., Oehme, M., Kostecki, K., Widmann, D., Gollhofer, M., Koerner, R., Bechler, S., Fischer, I.A., Wendav, T., Kasper, E., Schulze, J., Kittler, M.: Electroluminescence of GeSn/Ge MQW LEDs on Si substrate. Opt. Lett. 40, 3209–3212 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    Stange, D., Wirths, S., Geiger, R., Braucks, C.S., Marzban, B., von den Driesch, N., Mussler, G., Zabel, T., Stoica, T., Hartmann, J.M., Mantl, S., Ikonic, Z., Grützmacher, D., Sigg, H., Witzens, J., Buca, D.: Optically pumped GeSn microdisk lasers on Si. ACS Photonics 3, 1279–1285 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    Al-Kabi, S., Ghetmiri, S.A., Margetis, J., Pham, T., Zhou, Y., Dou, W., Collier, B., Quinde, R., Du, W., Mosleh, A., Liu, J., Sun, G., Soref, R.A., Tolle, J., Li, B., Mortazavi, M., Naseem, H.A., Yu, S.Q.: An optically pumped 2.5 μm GeSn laser on Si operating at 110 K. Appl. Phys. Lett. 109, 171105 (2016)

    Article  Google Scholar 

  6. 6.

    Stange, D., von den Driesch, N., Rainko, D., Roesgaard, S., Povstugar, I., Hartmann, J.M., Stoica, T., Ikonic, Z., Mantl, S., Grützmacher, D., Buca, D.: Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells. Optica 4, 185–188 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    Reboud, V., Gassenq, A., Pauc, N., Aubin, J., Milord, L., Thai, Q.M., Bertrand, M., Guilloy, K., Rouchon, D., Rothman, J., Zabel, T., Pilon, F.A., Sigg, H., Chelnokov, A., Hartmann, J.M., Calvo, V.: Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K. Appl. Phys. Lett. 111, 092101 (2017)

    Article  Google Scholar 

  8. 8.

    Margetis, J., Al-Kabi, S., Du, W., Dou, W., Zhou, Y., Pham, T., Grant, P., Ghetmiri, S., Mosleh, A., Li, B., Liu, J., Sun, G., Soref, R., Tolle, J., Mortazavi, M., Yu, S.Q.: Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K. ACS Photonics 5, 827–833 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    Tsukamoto, T., Hirose, N., Kasamatsu, A., Mimura, T., Matsui, T., Suda, Y.: Formation of GeSn layers on Si (001) substrates at high growth temperature and high deposition rate by sputter epitaxy method. J. Mater. Sci. 50, 4366–4370 (2015)

    CAS  Article  Google Scholar 

  10. 10.

    Shin, K.W., Kim, H.W., Kim, J., Yang, C., Lee, S., Yoon, E.: The effects of low temperature buffer layer on the growth of pure Ge on Si(001). Thin Solid Films 518, 6496–6499 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    Zheng, J., Li, L., Zhou, T., Zuo, Y., Li, C., Cheng, B., Wang, Q.: Growth of crystalline Ge1−xSnx films on Si (100) by magnetron sputtering. ECS Solid State Lett. 3, P111–P113 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    Fujimura, S., Someya, T., Yoshiba, S., Tsukamoto, T., Kamisako, K., Suda, Y.: Low-temperature fabrication technologies of Si solar cell by sputter epitaxy method. Jpn. J. Appl. Phys. 54, 08KD01 (2015)

    Article  Google Scholar 

  13. 13.

    Tsukamoto, T., Hirose, N., Kasamatsu, A., Mimura, T., Matsui, T., Suda, Y.: Investigation of Sn surface segregation during GeSn epitaxial growth by Auger electron spectroscopy and energy dispersive x-ray spectroscopy. Appl. Phys. Lett. 106, 052103 (2015)

    Article  Google Scholar 

  14. 14.

    Tsukamoto, T., Hirose, N., Kasamatsu, A., Mimura, T., Matsui, T., Suda, Y.: Control of surface flatness of Ge layers directly grown on Si (001) substrates by DC sputter epitaxy method. Thin Solid Films 592, 34–38 (2015)

    CAS  Article  Google Scholar 

  15. 15.

    Zheng, J., Wang, S., Liu, Z., Cong, H., Xue, C., Li, C., Zuo, Y., Cheng, B., Wang, Q.: GeSn p-i-n photodetectors with GeSn layer grown by magnetron sputtering epitaxy. Appl. Phys. Lett. 108, 033503 (2016)

    Article  Google Scholar 

  16. 16.

    Lee, J., Cho, H., Seo, D., Cho, S., Park, B.G.: Crystallization and characterization of GeSn deposited on Si with Ge buffer layer by low-temperature sputter epitaxy. J. Semicond. Technol. Sci. 16, 854–859 (2016)

    Article  Google Scholar 

  17. 17.

    Otsuka, S., Mori, T., Morita, Y., Uchida, N., Liu, Y., Ouchi, S., Fuketa, H., Migita, S., Masahara, M., Matsukawa, T.: Epitaxial growth of Ge thin film on Si (001) by DC magnetron sputtering. Mater. Sci. Semicond. Process. 70, 3–7 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    Watanabe, R., Tsukamoto, T., Kamisako, K., Suda, Y.: Crystallinity control of SiC grown on Si by sputtering method. J. Crystal Growth 463, 67–71 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    Mahmodi, H., Hashim, M.R.: Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1−xSnx films on Si substrate. Chin. Phys. B 26, 056801 (2017)

    Article  Google Scholar 

  20. 20.

    Zheng, J., Wang, S., Cong, H., Fenrich, C.S., Liu, Z., Xue, C., Li, C., Zuo, Y., Cheng, B., Harris, J.S., Wang, Q.: Characterization of a Ge1−x−ySiySnx/Ge1−xSnx multiple quantum well structure grown by sputtering epitaxy. Opt. Lett. 42, 1608–1611 (2017)

    CAS  Article  Google Scholar 

  21. 21.

    Chen, R., Huang, Y.C., Gupta, S., Lin, A.C., Sanchez, E., Kim, Y., Saraswat, K.C., Kamins, T.I., Harris, J.S.: Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing. J. Cryst. Growth 365, 29–34 (2013)

    CAS  Article  Google Scholar 

Download references


This research and development work was supported by the MIC/SCOPE #165103005. This work was partly carried out in the Advanced ICT Devices Lab in NICT.

Author information



Corresponding author

Correspondence to Takahiro Tsukamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsukamoto, T., Hirose, N., Kasamatsu, A. et al. Effects of Low-Temperature GeSn Buffer Layers on Sn Surface Segregation During GeSn Epitaxial Growth. Electron. Mater. Lett. 16, 9–13 (2020). https://doi.org/10.1007/s13391-019-00179-y

Download citation


  • GeSn
  • Sputter epitaxy
  • Buffer layer
  • Sn segregation
  • Raman