Skip to main content
Log in

Stable Interconnect System for Horizontal Thermoelectric Coolers by Thermodynamic-Based Prediction

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We studied the improvement of interfacial stability and contact resistance by applying Cu with high electrical conductivity but high diffusivity to thin film type thermoelectric devices. Since the thin film device has a large surface to volume ratio, it is necessary to minimize the contact resistance occurring at the interface in order to minimize heat generation due to resistance. For the reliability of such a device, long duration phase stability is required, especially when using Cu electrodes with high diffusivity. The interconnect system, including Cu and the barrier materials, was selected based on a phase diagram with a thermodynamic-based calculation. The interlayer was required to improve the unstable interface to prevent the reaction of Cu and Bi2Te3. Ta and Mo, which are low diffusivity materials, were selected as candidates. Thermodynamic calculation results showed that Ta has a stable interface with Bi2Te3, while Mo reacts with Te. The calculation was confirmed by experiments, and it was determined that the longer the annealing process, the higher the contact resistance is when the Mo interlayer is applied, which is in accordance with the thermodynamic calculation. The thermodynamic calculations are a useful methodology when selecting materials with a stable interface with highly reactive chalcogenide materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bulman, G., Barletta, P., Lewis, J., Baldasaro, N., Manno, M., Bar-Cohen, A., Yang, B.: Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 7, 10302 (2016). https://doi.org/10.1038/ncomms10302

    Article  Google Scholar 

  2. Takashiri, M., Miyazaki, K., Tanaka, S., Kurosaki, J., Nagai, D., Tsukamoto, H.: Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2990774

    Google Scholar 

  3. Bailini, A., Donati, F., Zamboni, M., Russo, V., Passoni, M., Casari, C.S., Li Bassi, A., Bottani, C.E.: Pulsed laser deposition of Bi2Te3 thermoelectric films. Appl. Surf. Sci. 254(4), 1249–1254 (2007). https://doi.org/10.1016/j.apsusc.2007.09.039

    Article  Google Scholar 

  4. Agarwal, K., Sharma, R., Mehta, B.R.: Synthesis and characterization of Bi2Te3 nanostructured thin films. J. Nanosci. Nanotechnol. 15(4), 2882–2886 (2015). https://doi.org/10.1166/jnn.2015.7441

    Article  Google Scholar 

  5. Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4(4), 235–238 (2009). https://doi.org/10.1038/nnano.2008.417

    Article  Google Scholar 

  6. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)

    Article  Google Scholar 

  7. da Silva, L.W., Kaviany, M.: Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport. Int. J. Heat Mass Transf. 47(10–11), 2417–2435 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.024

    Article  Google Scholar 

  8. Mizoshiri, M., Mikami, M., Ozaki, K., Shikida, M., Hata, S.: Lift-off patterning of thermoelectric thick films deposited by a thermally assisted sputtering method. Appl. Phys. Express (2014). https://doi.org/10.7567/apex.7.057101

    Google Scholar 

  9. Goncalves, L.M., Rocha, J.G., Couto, C., Alpuim, P., Min, G., Rowe, D.M., Correia, J.H.: Fabrication of flexible thermoelectric microcoolers using planar thin-film technologies. J. Micromech. Microeng. 17(7), S168–S173 (2007). https://doi.org/10.1088/0960-1317/17/7/s14

    Article  Google Scholar 

  10. Yang, F., Zheng, S., Wang, H., Chu, W., Dong, Y.: A thin film thermoelectric device fabricated by a self-aligned shadow mask method. J. Micromech. Microeng. (2017). https://doi.org/10.1088/1361-6439/aa64a3

    Google Scholar 

  11. Sullivan, O., Gupta, M.P., Mukhopadhyay, S., Kumar, S.: On-chip power generation using ultrathin thermoelectric generators. J. Electron. Packag. (2014). https://doi.org/10.1115/1.4027995

    Google Scholar 

  12. Kwon, S.-D., Ju, B.-K., Yoon, S.-J., Kim, J.-S.: Fabrication of bismuth telluride-based alloy thin film thermoelectric devices grown by metal organic chemical vapor deposition. J. Electron. Mater. 38(7), 920–924 (2009). https://doi.org/10.1007/s11664-009-0704-8

    Article  Google Scholar 

  13. Takashiri, M., Shirakawa, T., Miyazaki, K., Tsukamoto, H.: Fabrication and characterization of bismuth–telluride-based alloy thin film thermoelectric generators by flash evaporation method. Sens. Actuators A 138(2), 329–334 (2007). https://doi.org/10.1016/j.sna.2007.05.030

    Article  Google Scholar 

  14. Liu, W., Jie, Q., Kim, H.S., Ren, Z.: Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater. 87, 357–376 (2015). https://doi.org/10.1016/j.actamat.2014.12.042

    Article  Google Scholar 

  15. Jing, H., Li, Y., Xu, L., Han, Y., Lu, G., Zhang, H.: interfacial reaction and shear strength of SnAgCu/Ni/Bi2Te3-based TE materials during aging. J. Mater. Eng. Perform. 24(12), 4844–4852 (2015). https://doi.org/10.1007/s11665-015-1809-2

    Article  Google Scholar 

  16. Lo, L.-C., Wu, A.T.: Interfacial reactions between diffusion barriers and thermoelectric materials under current stressing. J. Electron. Mater. 41(12), 3325–3330 (2012). https://doi.org/10.1007/s11664-012-2275-3

    Article  Google Scholar 

  17. Li, Z., Xiao, C., Zhu, H., Xie, Y.: Defect chemistry for thermoelectric materials. J. Am. Chem. Soc. 138(45), 14810–14819 (2016). https://doi.org/10.1021/jacs.6b08748

    Article  Google Scholar 

  18. Lin, C.-F., Hau, N.Y., Huang, Y.-T., Chang, Y.-H., Feng, S.-P., Chen, C.-M.: Synergetic effect of Bi 2 Te 3 alloys and electrodeposition of Ni for interfacial reactions at solder/Ni/Bi 2 Te 3 joints. J. Alloy. Compd. 708, 220–230 (2017). https://doi.org/10.1016/j.jallcom.2017.02.300

    Article  Google Scholar 

  19. Gupta, R.P., Xiong, K., White, J.B., Cho, K., Alshareef, H.N., Gnade, B.E.: Low resistance ohmic contacts to Bi[sub 2]Te[sub 3] using Ni and Co Metallization. J. Electrochem. Soc. (2010). https://doi.org/10.1149/1.3385154

    Google Scholar 

  20. Zhu, X., Cao, L., Zhu, W., Deng, Y.: Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance. Adv. Mater. Interfaces (2018). https://doi.org/10.1002/admi.201801279

    Google Scholar 

  21. Jeong, M.-W., Na, S., Shin, H., Park, H.-B., Lee, H.-J., Joo, Y.-C.: Thermomechanical in situ monitoring of Bi2Te3 thin film and its relationship with microstructure and thermoelectric performances. Electron. Mater. Lett. 14(4), 426–431 (2018). https://doi.org/10.1007/s13391-018-0054-x

    Article  Google Scholar 

  22. Fujimoto, S., Sano, S., Kajitani, T.: Analysis of diffusion mechanism of Cu in polycrystalline Bi2Te3-based alloy with the aging of electrical conductivity. Jpn. J. Appl. Phys. 46(8A), 5033–5039 (2007). https://doi.org/10.1143/jjap.46.5033

    Article  Google Scholar 

  23. Pennec, F., Peyrou, D., Leray, D., Pons, P., Plana, R., Courtade, F.: Impact of the surface roughness description on the electrical contact resistance of ohmic switches under low actuation forces. IEEE Trans. Compon. Packag. Manuf. Technol. 2(1), 85–94 (2012). https://doi.org/10.1109/tcpmt.2011.2108655

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017M3D1A1040688). This work also was supported by the IT R&D program of MOTIE/KEIT [10049130]. Development of planar-type cooling technology for mobile applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Chang Joo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, MW., Lee, SY., Park, HB. et al. Stable Interconnect System for Horizontal Thermoelectric Coolers by Thermodynamic-Based Prediction. Electron. Mater. Lett. 15, 654–662 (2019). https://doi.org/10.1007/s13391-019-00159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00159-2

Keywords

Navigation