Graphene Enhanced Electrical Properties of Polyethylene Blends for High-Voltage Insulation


Graphene as a novel additive in low density polyethylene (LDPE), high density polyethylene–low density polyethylene blend (10%HDPE–LDPE) and polypropylene–low density polyethylene blend (10%PP–LDPE), is investigated for promising eco-friendly insulating materials in high voltage cables. The composites with graphene amounts of 0, 0.002 wt%, 0.02 wt%, and 0.2 wt% are prepared by the solution mixing method. With attempt to disclose the structure–property relationships, the composites are extensively characterized by physical techniques including Fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis and differential scanning calorimetry, and electrical measurements including electrical treeing, direct current conductivity and space charge distributions. Results show that graphene can significantly enhances the thermal stability of LDPE and 10%PP–LDPE, slightly decrease the degree of crystallinity, change the size of the crystal diameters, and improve the phase distribution of the polymer blends. Consequently, graphene can prolong the electrical tree initiation time and block the extension of electrical tree. Besides, it can modulate the trap distributions, which will further change the conductivity and ability to suppress space charge accumulations. This excellent performance of graphene could be attributed to its good exfoliation, uniform dispersion and outstretched morphology in the polymer matrix, as well as its strong ability to capture electrons.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  2. 2.

    Wei, Z., Hou, Y., Yang, Y., Liu, Y.: The progress on graphene-based catalysis. Curr. Org. Chem. 20, 2055–2082 (2016)

    Article  Google Scholar 

  3. 3.

    Wei, Z., Liu, H., Chen, Y., Guo, D., Pan, R., Liu, Y.: Mechanistic insights into the selective hydrogenation of resorcinol to 1,3-cyclohexanedione over Pd/rGO catalyst through DFT calculation. Chin. J. Chem. Eng. 26, 2542–2548 (2018)

    Article  Google Scholar 

  4. 4.

    Georgakilas, V., Tiwari, J.N., Kemp, K.C., Perman, J.A., Bourlinos, A.B., Kim, K.S., Zboril, R.: Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116, 5464–5519 (2016)

    Article  Google Scholar 

  5. 5.

    Sattar, T.: Current review on synthesis, composites and multifunctional properties of graphene. Top. Curr. Chem. (Cham) 377, 10 (2019)

    Article  Google Scholar 

  6. 6.

    Han, S.J., Lee, H.-I., Jeong, H.M., Kim, B.K., Raghu, A.V., Reddy, K.R.: Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J. Macromol. Sci. Part B Phys. 53, 1193–1204 (2014)

    Article  Google Scholar 

  7. 7.

    Fim, F.D.C., Basso, N.R.S., Graebin, A.P., Azambuja, D.S., Galland, G.B.: Thermal, electrical, and mechanical properties of polyethylenegraphene nanocomposites obtained by in situ polymerization. J. Appl. Polym. Sci. 128, 2630–2637 (2013)

    Article  Google Scholar 

  8. 8.

    Fabiani, D., Mancinelli, P., Vanga-Bouanga, C., Frechette, M.F., Castellon, J.: Effect of graphene-oxide content on space charge characteristics of PE-based nanocomposites. Paper Presented at the IEEE EIC, Montreal, Canada, June (2016)

  9. 9.

    Li, Z., Du, B., Han, C., Xu, H.: Trap modulated charge carrier transport in polyethylene/graphene nanocomposites. Sci. Rep. 7, 4015 (2017)

    Article  Google Scholar 

  10. 10.

    Frechette, M.F., Vanga-Bouanga, C., Fabiani, D., Castellon, J., Diaham, S.: Graphene-based polymer composites: what about it for the HV electrotechnical arena? Paper Presented at the IEEE EIC, Seattle, WA, USA, June (2015)

  11. 11.

    Li, Z., Du, B., Yang, Z., Han, C.: Temperature dependent trap level characteristics of graphene/LDPE nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 25, 137–144 (2018)

    Article  Google Scholar 

  12. 12.

    Chen, X., Xu, Y., Cao, X., Dodd, S.J., Dissado, L.A.: Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples. IEEE Trans. Dielectr. Electr. Insul. 18, 847–860 (2011)

    Article  Google Scholar 

  13. 13.

    Zha, J., Yan, H., Li, W., Dang, Z.: Environmentally friendly polypropylene/thermoplastic elastomer composites with modified graphene oxide for HVDC application. IEEE Trans. Dielectr. Electr. Insul. 25, 1088–1094 (2018)

    Article  Google Scholar 

  14. 14.

    Chen, X., Hoang, A.T., Serdyuk, Y.V., Gubanski, S.M.: Surface potential decay on LDPE and its nanocomposites. Paper Presented at the IEEE CEIDP, Fort Worth, TX, USA, Oct (2017)

  15. 15.

    Chen, X., Murdany, D., Liu, D., Andersson, M., Gubanski, S.M., Gedde, U.W.: Suwarno: AC and DC pre-stressed electrical trees in LDPE and its aluminum oxide nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 23, 1506–1514 (2016)

    Article  Google Scholar 

  16. 16.

    Andersson, M.G., Chen, X., Hynynen, J., Andersson, M.R., Gkourmpis, T., Hagstrand, P.-O., Gubanski, S., Mueller, C.: Invariant dielectric strength upon addition of low amounts of HDPE to LDPE. Paper Presented at the IEEE CEIDP, Toronto, Canada, Oct (2016)

  17. 17.

    Mauri, M., Peterson, A., Senol, A., Elamin, K., Gitsas, A., Hjertberg, T., Matic, A., Gkourmpis, T., Prieto, O., Mueller, C.: Byproduct-free curing of a highly insulating polyethylene copolymer blend: an alternative to peroxide crosslinking. J. Mater. Chem. C 6, 11292–11302 (2018)

    Article  Google Scholar 

  18. 18.

    Vaughan, A.S., Hosier, I.L., Dodd, S.J., Sutton, S.J.: On the structure and chemistry of electrical trees in polyethylene. J. Phys. D Appl. Phys. 39, 962–978 (2006)

    Article  Google Scholar 

  19. 19.

    Choo, W., Chen, G., Swingler, S.G.: Electric field in polymeric cable due to space charge accumulation under DC and temperature gradient. IEEE Trans. Dielectr. Electr. Insul. 18, 596–606 (2011)

    Article  Google Scholar 

  20. 20.

    Yamano, Y., Iizuka, M.: Improvement of electrical tree resistance of LDPE by mixed addition of nanoparticles and phthalocyanine. IEEE Trans. Dielectr. Electr. Insul. 18, 329–337 (2011)

    Article  Google Scholar 

  21. 21.

    Jarvid, M., Johansson, A., Bjuggren, J.M., Wutzel, H., Englund, V., Gubanski, S., Muller, C., Andersson, M.R.: Tailored side-chain architecture of benzil voltage stabilizers for enhanced dielectric strength of cross-linked polyethylene. J. Polym. Sci. Part B Polym. Phys. 52, 1047–1054 (2014)

    Article  Google Scholar 

  22. 22.

    Li, C., Han, B., Zhang, H., Zhao, H., Zhang, C.: Effect of acetophenone on the breakdown strength of polyethylene. Paper Presented at the IEEE 11th ICPADM, Sydney, Australia, July (2015)

  23. 23.

    Wang, L., Chen, X., Hu, L., Gubanski, S.M., Blennow, J.: Electrical tree formation as a measure of degradation resistance in polymeric materials for HVDC applications. Paper Presented at the IEEE CEIDP, Shenzhen, China, Oct (2013)

  24. 24.

    Zhang, H., Shang, Y., Zhao, H., Han, B.Z., Li, Z.S.: Study of the effect of valence bond isomerizations on electrical breakdown by adding acetophenone to polyethylene as voltage stabilizers. Comput. Theor. Chem. 1062, 99–104 (2015)

    Article  Google Scholar 

  25. 25.

    Yang, Z.D., Zhang, H., Zhao, H., Han, B.Z.: Trap mechanism based on frontier molecular orbitals of additives in polyethylene insulators: a theoretical study and molecular design strategy. Int. J. Quantum Chem. 115, 1483–1489 (2015)

    Article  Google Scholar 

  26. 26.

    Keru, G., Ndungu, P.G., Mola, G.T., Nogueira, A.F., Nyamori, V.O.: Organic solar cells with boron-or nitrogen-doped carbon nanotubes in the P3HT: PCBM photoactive layer. J. Nanomater. 2016, 11 (2016)

    Article  Google Scholar 

  27. 27.

    Ma, Q., Gabor, N.M., Andersen, T.I., Nair, N.L., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P.: Competing channels for hot-electron cooling in graphene. Phys. Rev. Lett. 112, 247401 (2014)

    Article  Google Scholar 

  28. 28.

    Williams, K.J., Nelson, C.A., Yan, X., Li, L., Zhu, X.: Hot electron injection from graphene quantum dots to TiO2. ACS Nano. 7, 1388–1394 (2013)

    Article  Google Scholar 

  29. 29.

    Kong, B.D., Champlain, J.G., Boos, J.B.: Hot electron inelastic scattering and transmission across graphene surfaces. J. Appl. Phys. 121, 235101 (2017)

    Article  Google Scholar 

  30. 30.

    Song, S., Zhao, H., Zheng, X., Zhang, H., Liu, Y., Wang, Y., Han, B.: A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation. R. Soc. Open Sci. 5, 170772 (2018)

    Article  Google Scholar 

  31. 31.

    Wei, Z.J., Yang, Y., Hou, Y.X., Liu, Y.X., He, X.D., Deng, S.G.: A new approach towards acid catalysts with high reactivity based on graphene nanosheets. ChemCatChem 6, 2354–2363 (2014)

    Article  Google Scholar 

  32. 32.

    Wei, Z.J., Pan, R.F., Hou, Y.X., Yang, Y., Liu, Y.X.: Graphene-supported Pd catalyst for highly selective hydrogenation of resorcinol to 1, 3-cyclohexanedione through giant pi-conjugate interactions. Sci. Rep. 5, 15664 (2015)

    Article  Google Scholar 

  33. 33.

    Wei, Z., Hou, Y., Zhu, X., Guo, L., Liu, Y., Zhang, A.: Nitrogen-doped graphene-supported iron catalyst for highly chemoselective hydrogenation of nitroarenes. ChemCatChem 10, 2009–2013 (2018)

    Article  Google Scholar 

  34. 34.

    Olley, R.H., Bassett, D.C.: An improved permanganic etchant for polyolefines. Polymer 23, 1707–1710 (1982)

    Article  Google Scholar 

  35. 35.

    Gulmine, J.V., Janissek, P.R., Heise, H.M., Akcelrud, L.: Polyethylene characterization by FTIR. Polym. Test. 21, 557–563 (2002)

    Article  Google Scholar 

  36. 36.

    Gao, W., Lu, Y., Chao, Y., Ma, Y., Zhu, B., Jia, J., Huang, A., Xie, K., Li, J., Bai, Y.: Performance evolution of alkylation graphene oxide reinforcing high-density polyethylene. J. Phys. Chem. C 121, 21685–21694 (2017)

    Article  Google Scholar 

  37. 37.

    Tang, Y., Jia, Y., Alva, G., Huang, X., Fang, G.: Synthesis, characterization and properties of palmitic acid/high density polyethylene/graphene nanoplatelets composites as form-stable phase change materials. Sol. Energy Mater. Sol. Cells 155, 421–429 (2016)

    Article  Google Scholar 

  38. 38.

    Thakur, S., Karak, N.: Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331–5339 (2012)

    Article  Google Scholar 

  39. 39.

    Yan, X., Chen, J., Yang, J., Xue, Q., Miele, P.: Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide–polyaniline and graphene–polyaniline hybrid papers. ACS Appl. Mater. Interfaces 2, 2521–2529 (2010)

    Article  Google Scholar 

  40. 40.

    Mancinelli, P., Santangelo, V., Fabiani, D., Saccani, A., Toselli, M., Frechette, M.F.: LDPE composite materials obtained from building blocks containing standardized graphene interfaces. Paper Presented at the ISEIM, Niigata, Japan, June (2014)

  41. 41.

    Chi, X., Cheng, L., Liu, W., Zhang, X., Li, S.: Characterization of polypropylene modified by blending elastomer and nano-silica. Materials 11, 1321 (2018)

    Article  Google Scholar 

  42. 42.

    Huang, L., Yang, W., Yang, B., Yang, M., Zheng, G., An, H.: Banded spherulites of HDPE molded by gas-assisted and conventional injection molding. Polymer 49, 4051–4056 (2008)

    Article  Google Scholar 

  43. 43.

    Wang, B., Huang, H., Lu, H.: Crystal morphology of water-assisted injection molded high-density polyethylene with two different molecular weights. J. Macromol. Sci. Part B Phys. 50, 1615–1624 (2011)

    Article  Google Scholar 

  44. 44.

    Pallon, L.K.H., Nilsson, F., Yu, S., Liu, D., Diaz, A., Holler, M., Chen, X.R., Gubanski, S., Hedenqvist, M.S., Olsson, R.T., Gedde, U.W.: Three-dimensional nanometer features of direct current electrical trees in low-density polyethylene. Nano Lett. 17, 1402–1408 (2017)

    Article  Google Scholar 

  45. 45.

    Chen, X., Mantsch, A.R., Hu, L., Gubanski, S.M., Blennow, J., Olsson, C.-O.: Electrical treeing behavior of DC and thermally aged polyethylenes utilizing wire-plane electrode geometries. IEEE Trans. Dielectr. Electr. Insul. 21, 45–52 (2014)

    Article  Google Scholar 

  46. 46.

    Na, B., Wang, K., Zhang, Q., Du, R., Fu, Q.: Tensile properties in the oriented blends of high-density polyethylene and isotactic polypropylene obtained by dynamic packing injection molding. Polymer 46, 3190–3198 (2005)

    Article  Google Scholar 

  47. 47.

    Liu, P., Chen, W., Bai, S.: Influence of solid-state shear milling on structure and mechanical properties of polypropylene/polyethylene blends. Polym. Plast. Technol. Eng. 57, 682–689 (2018)

    Article  Google Scholar 

  48. 48.

    Mittal, V., Kim, S., Neuhofer, S., Paulik, C.: Polyethylene/graphene nanocomposites: effect of molecular weight on mechanical, thermal, rheological and morphological properties. Colloid Polym. Sci. 294, 691–704 (2016)

    Article  Google Scholar 

  49. 49.

    Chen, X., Xu, Y., Cao, X., Gubanski, S.M.: electrical treeing behavior at high temperature in XLPE cable insulation samples. IEEE Trans. Dielectr. Electr. Insul. 22, 2841–2851 (2015)

    Article  Google Scholar 

  50. 50.

    Du, B., Han, C., Li, Z., Li, J.: Effect of graphene oxide particles on space charge accumulation in LDPE/GO nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 25, 1479–1486 (2018)

    Article  Google Scholar 

  51. 51.

    Khanam, P.N., AlMaadeed, M.A., Ouederni, M., Mayoral, B., Hamilton, A., Sun, D.: Effect of two types of graphene nanoplatelets on the physico-mechanical properties of linear low-density polyethylene composites. Adv. Manuf. Polym. Compos. Sci. 2, 67–73 (2016)

    Google Scholar 

  52. 52.

    Bu, J., Huang, X., Li, S., Jiang, P.: Significantly enhancing the thermal oxidative stability while remaining the excellent electrical insulating property of low density polyethylene by addition of antioxidant functionalized graphene oxide. Carbon 106, 218–227 (2016)

    Article  Google Scholar 

  53. 53.

    Cao, Z., Song, P., Fang, Z., Xu, Y., Zhang, Y., Guo, Z.: Physical wrapping of reduced graphene oxide sheets by polyethylene wax and its modification on the mechanical properties of polyethylene. J. Appl. Polym. Sci. 126, 1546–1555 (2012)

    Article  Google Scholar 

  54. 54.

    Kuila, T., Bose, S., Hong, C.E., Uddin, M.E., Khanra, P., Kim, N.H., Lee, J.H.: Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 49, 1033–1037 (2011)

    Article  Google Scholar 

  55. 55.

    Malas, A., Das, C.K.: Effect of graphene oxide on the physical, mechanical and thermo-mechanical properties of neoprene and chlorosulfonated polyethylene vulcanizates. Compos. B 79, 639–648 (2015)

    Article  Google Scholar 

  56. 56.

    Niemczyk, A., Dziubek, K., Sacher-Majewska, B., Czaja, K., Dutkiewicz, M., Marciniec, B.: Study of thermal properties of polyethylene and polypropylene nanocomposites with long alkyl chain-substituted POSS fillers. J. Therm. Anal. Calorim. 125, 1287–1299 (2016)

    Article  Google Scholar 

  57. 57.

    Andersson, M.G., Hynynen, J., Andersson, M.R., Hagstrand, P.-O., Gkourmpis, T., Mueller, C.: Additive-like amounts of HDPE prevent creep of molten LDPE: phase-behavior and thermo-mechanical properties of a melt-miscible blend. J. Polym. Sci. Part B Polym. Phys. 55, 146–156 (2017)

    Article  Google Scholar 

  58. 58.

    Park, S., He, S., Wang, J., Stein, A., Macosko, C.W.: Graphene-polyethylene nanocomposites: effect of graphene functionalization. Polymer 104, 1–9 (2016)

    Article  Google Scholar 

  59. 59.

    Tu, C., Nagata, K., Yan, S.: Morphology and electrical conductivity of polyethylene/polypropylene blend filled with thermally reduced graphene oxide and surfactant exfoliated graphene. Polym. Compos. 38, 2098–2105 (2017)

    Article  Google Scholar 

  60. 60.

    Alig, I., Lellinger, D., Dudkin, S.M., Poetschke, P.: Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites: recovery after shear and crystallization. Polymer 48, 1020–1029 (2007)

    Article  Google Scholar 

  61. 61.

    Yatsyshyn, B.P., Aksimentyeva, O.I., Domantsevych, N.I.: Conductivity in modified polyethylene films. Mol. Cryst. Liq. Cryst. 496, 74–81 (2008)

    Article  Google Scholar 

  62. 62.

    Wang, S., Chen, P., Li, H., Li, J., Chen, Z.: Improved DC performance of crosslinked polyethylene insulation depending on a higher purity. IEEE Trans. Dielectr. Electr. Insul. 24, 1809–1817 (2017)

    Article  Google Scholar 

  63. 63.

    Montanari, G.C., Mazzanti, G., Palmieri, F., Motori, A., Perego, G., Serra, S.: Space-charge trapping and conduction in LDPE, HDPE and XLPE. J. Phys. D Appl. Phys. 34, 2902–2911 (2001)

    Article  Google Scholar 

Download references


Zuojun Wei thanks the National Natural Science Foundation of China (21878269, 21476211), the Natural Science Foundation of Zhejiang Province (LY14B060003) for financing this work. Xiangrong Chen thanks the Natural Science Foundation of Zhejiang Province (LY18E070003), the National Key R&D Program of China (2018YFB0904400), the Fundamental Research Funds for the Central Universities (2018QNA4017), “Science and technology innovation 2025” Key Project of Ningbo City and the One-hundred Talents Program of Zhejiang University (A) for financing this work.

Author information



Corresponding author

Correspondence to Xiangrong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1716 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Hou, Y., Jiang, C. et al. Graphene Enhanced Electrical Properties of Polyethylene Blends for High-Voltage Insulation. Electron. Mater. Lett. 15, 582–594 (2019).

Download citation


  • Graphene
  • Polyethylene blend
  • High voltage insulation
  • Electrical tree
  • DC conductivity
  • Space charge