Electronic Materials Letters

, Volume 15, Issue 5, pp 547–554 | Cite as

A Bio-memristor with Overwhelming Capacitance Effect

  • Shuangsuo Mao
  • Xuejiao Zhang
  • Bai SunEmail author
  • Bing Li
  • Tian Yu
  • Yuanzheng Chen
  • Yong ZhaoEmail author
Original Article - Chemistry and Biomaterials


A bio-memristor, which was prepared using the bio-materials as basic components, has being become the focus of research owing to the potential application as medical diagnosis in biomedical field. Herein, an environmentally-friendly and sustainable bio-memristor device with Ag/walnut skin (WS)/ITO structure was fabricated, in which an obvious and reliably repeated rectangular current–voltage characteristic curve is observed. Our result shows that the WS, an useless bio-material, can be used to fabricate electronic devices after proper processing. Finally, the memory mechanism based on the conductive filament mode associated the capacitance effect is ascribed. This work has opened a new way to exploit the next generation bio-electronic device with advantages of environmentally-friendly, sustainable and pollution-free.

Graphical Abstract


Bio-memristor Capacitance effect Rectangular hysteresis loop Bio-materials Environmentally-friendly 



SM and XZ contributed equally to this work. The work was supported by the Fundamental Research Funds for the Central Universities (No. 2682017CX046), Youth Fund of Science and Technology of Hebei Colleges (No. QN2017010).

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    Kolar, J., Macak, J.M., Terabe, K., Wagner, T.: Down-scaling of resistive switching to nanoscale using porous anodic alumina membranes. J. Mater. Chem. C 2, 349 (2014)CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Xu, H.Y., Wang, Z.Q., Yu, H., Ma, J.G., Liu, Y.C.: Coexistence of bipolar and unipolar resistive switching behaviors in the double-layer Ag/ZnS–Ag/CuAlO2/Pt memory device. Appl. Surf. Sci. 360, 338 (2014)CrossRefGoogle Scholar
  3. 3.
    Zhou, G.D., Wu, B., Liu, X.Q., Li, P., Zhang, S.J., Sun, B., Zhou, A.K.: Two-bit memory and quantized storage phenomenon in conventional MOS structures with double-stacked Pt-NCs in an HfAlO matrix. Phys. Chem. Chem. Phys. 18, 6509 (2016)CrossRefGoogle Scholar
  4. 4.
    Mondal, S., Chueh, C.H., Pan, T.M.: Current conduction and resistive switching characteristics of Sm2O3 and Lu2O3 thin films for low-power flexible memory applications. J. Appl. Phys. 115, 014501 (2014)CrossRefGoogle Scholar
  5. 5.
    Hahm, S.G., Kang, N.G., Kwon, W., Kim, K., Ko, Y.G., Ahn, S., Kang, B.G., Chang, T., Lee, J.S., Ree, M.: Programmable bipolar and unipolar nonvolatile memory devices based on poly(2-(N-carbazolyl)ethyl methacrylate) end-capped with fullerene. Adv. Mater. 24, 1062 (2012)CrossRefGoogle Scholar
  6. 6.
    Miao, S.F., Li, H., Xu, Q.F., Li, Y.Y., Ji, S.J., Li, N.J., Wang, L.H., Zheng, J.W., Lu, J.M.: Tailoring of molecular planarity to reduce charge injection barrier for high-performance small-molecule-based ternary memory device with low threshold voltage. Adv. Mater. 24, 6210 (2012)CrossRefGoogle Scholar
  7. 7.
    Yoon, J.H., Han, J.H., Jung, J.S., Jeon, W., Kim, G.H., Song, S.J., Seok, J.Y., Yoon, K.J., Lee, M.H., Hwang, C.S.: Highly improved uniformity in the resistive switching parameters of TiO2 thin films by inserting Ru nanodots. Adv. Mater. 25, 1987 (2013)CrossRefGoogle Scholar
  8. 8.
    Sun, B., Zhu, S.H., Mao, S.S., Zheng, P.P., Xia, Y.D., Yang, F., Lei, M., Zhao, Y.: From dead leaves to sustainable organic resistive switching memory. J. Colloid Interface Sci. 513, 774 (2018)CrossRefGoogle Scholar
  9. 9.
    Sun, B., Zhang, X., Zhou, G.D., Li, P.Y., Zhang, Y., Wang, H.Y., Xia, Y.D., Zhao, Y.: An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel. Org. Electron. 42, 181 (2017)CrossRefGoogle Scholar
  10. 10.
    Ron, I., Pecht, I., Sheves, M., Cahen, D.: Proteins as solid-state electronic conductors. Acc. Chem. Res. 43, 945 (2010)CrossRefGoogle Scholar
  11. 11.
    Irimia-Vladu, M., Sariciftci, N.S., Bauer, S.: Exotic materials for bio-organic electronics. J. Mater. Chem. 21, 1350 (2011)CrossRefGoogle Scholar
  12. 12.
    Wang, H., Meng, F.B., Zhu, B.W., Leow, W.R., Liu, Y.Q., Chen, X.D.: Resistive switching memory devices based on proteins. Adv. Mater. 27, 7670 (2015)CrossRefGoogle Scholar
  13. 13.
    Zheng, L., Sun, B., Mao, S., Zhu, S., Zheng, P., Zhang, Y., Lei, M., Zhao, Y.: Metal ions redox induced repeatable nonvolatile resistive switching memory behavior in biomaterials. ACS Appl. Bio Mater. 1, 496 (2018)CrossRefGoogle Scholar
  14. 14.
    Gülnahar, M., Efeoğlu, H., Şahin, M.: On the studies of capacitance–voltage–temperature and deep level characteristics of an Au/p-GaTe Schottky diode. J. Alloys Comd. 694, 1019 (2017)CrossRefGoogle Scholar
  15. 15.
    Qi, Y., Sun, B., Fu, G., Li, T., Zhu, S., Zheng, L., Mao, S., Kan, X., Lei, M., Chen, Y.: A nonvolatile organic resistive switching memory based on lotus leaves. Chem. Phys. 516, 168 (2018)CrossRefGoogle Scholar
  16. 16.
    Hung, Y.C., Hsu, W.T., Lin, T.Y., Fruk, L.: Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Appl. Phys. Lett. 99, 253301 (2011)CrossRefGoogle Scholar
  17. 17.
    Meng, F.B., Jiang, L., Zheng, K.H., Goh, C.F., Lim, S., Hng, H.H., Ma, J., Boey, F., Chen, X.D.: Protein-based memristive nanodevices. Small 21, 3016 (2011)CrossRefGoogle Scholar
  18. 18.
    Wu, C.Y., Wang, X.G., Pan, Z.Q., Wang, Y.Y., Yu, Y.Q., Wang, L., Luo, L.B.: Facial synthesis of KCu7S4 nanobelts for nonvolatile memory device applications. J. Mater. Chem. C 4, 589 (2016)CrossRefGoogle Scholar
  19. 19.
    Jeon, J.H., Joo, H.Y., Kim, Y.M., Lee, D.H., Kim, J.S., Yeon, S.K., Choi, T., Park, B.H.: Selector-free resistive switching memory cell based on BiFeO3 nanoisland showing high resistance ratio and nonlinearity factor. Sci. Rep. 6, 23299 (2016)CrossRefGoogle Scholar
  20. 20.
    Sun, B., Wei, L.J., Li, H.W., Jia, X.J., Wu, J.H., Chen, P.: The DNA strand assisted conductive filament mechanism for improved resistive switching memory. J. Mater. Chem. C 3, 12149 (2015)CrossRefGoogle Scholar
  21. 21.
    Wang, H., Du, Y.M., Li, Y.T., Zhu, B.W., Leow, W.R., Li, Y.G., Pan, J.S., Wu, T., Chen, X.D.: Configurable resistive switching between memory and threshold characteristics for protein-based devices. Adv. Funct. Mater. 25, 3825 (2015)CrossRefGoogle Scholar
  22. 22.
    Jian, Z.L., Luo, W., Ji, X.L.: Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137, 11566 (2015)CrossRefGoogle Scholar
  23. 23.
    Sun, B., Tang, M., Gao, J., Li, C.M.: Light-controlled simultaneous resistive and ferroelectricity switching effects of BiFeO3 film for a flexible multistate high-storage memory device. ChemElectroChem 3, 896 (2016)CrossRefGoogle Scholar
  24. 24.
    Lee, A.R., Bae, Y.C., Baek, G.H., Chung, J.B., Lee, S.H., Im, H.S., Hong, J.P.: Multifunctional resistive switching behaviors employing various electroforming steps. J. Mater. Chem. C 4, 823 (2016)CrossRefGoogle Scholar
  25. 25.
    Chen, J.H., Chen, B.B., Shen, Y.J., Guo, J.X., Liu, B.T., Dai, X.H., Xu, Y., Mai, Y.H.: Achievement of two logical states through a polymer/silicon interface for organic–inorganic hybrid memory. Appl. Phys. Lett. 111, 191601 (2017)CrossRefGoogle Scholar
  26. 26.
    Zhou, G.D., Sun, B., Yao, Y.Q., Zhang, H.H., Zhou, A.K., Alameh, K., Ding, B.F., Song, Q.L.: Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong Se microwires. Appl. Phys. Lett. 109, 143904 (2016)CrossRefGoogle Scholar
  27. 27.
    Gao, L.W., Li, Y.H., Li, Q., Song, Z.X., Ma, F.: Enhanced resistive switching characteristics in Al2O3 memory devices by embedded Ag nanoparticles. Nanotechnology 28, 215201 (2017)CrossRefGoogle Scholar
  28. 28.
    Huang, Y., Shen, Z.H., Wu, Y., Wang, X.Q., Zhang, S.F., Shi, X.Q., Zeng, H.B.: Amorphous ZnO based resistive random access memory. RSC Adv. 6, 17867 (2016)CrossRefGoogle Scholar
  29. 29.
    Yoon, C., Lee, J.H., Lee, S., Jeon, J.H., Jang, J.T., Kim, D.H., Kim, Y.H., Park, B.H.: Synaptic plasticity dselectively activated by polarization-dependent energy-efficient ion migration in an ultrathin ferroelectric tunnel junction. Nano Lett. 17, 1949 (2017)CrossRefGoogle Scholar
  30. 30.
    Lim, E.W., Ismail, R.: Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4, 586 (2015)CrossRefGoogle Scholar
  31. 31.
    Khan, A.I., Chatterjee, K., Wang, B., Drapcho, S., You, L., Serrao, C., Bakaul, S.R., Ramesh, R., Salahuddin, S.: Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182 (2015)CrossRefGoogle Scholar
  32. 32.
    Burlingame, Q., Coburn, C., Che, X., Panda, A., Qu, Y., Forrest, S.R.: Centimetre-scale electron diffusion in photoactive organic heterostructures. Nature 554, 77 (2018)CrossRefGoogle Scholar
  33. 33.
    Wei, L.J., Sun, B., Zhao, W.X., Li, H.W., Chen, P.: Light regulated I–V hysteresis loop of Ag/BiFeO3/FTO thin film. Appl. Surf. Sci. 393, 325 (2017)CrossRefGoogle Scholar
  34. 34.
    Sun, H.T., Liu, Q., Li, C.F., Long, S.B., Lv, H.B., Bi, C., Huo, Z.L., Li, L., Liu, M.: Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology. Adv. Funct. Mater. 24, 5679 (2014)CrossRefGoogle Scholar
  35. 35.
    Zheng, L., Sun, B., Chen, Y., Li, T., Mao, S., Zhu, S., Wang, H., Zhang, Y., Lei, M., Zhao, Y.: The redox of hydroxyl assisted metallic filament induced resistive switching memory based on a biomaterial constructed sustainable and environment-friendly device. Mater. Today Chem. 10, 167 (2018)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of ChinaSouthwest Jiaotong UniversityChengduChina
  2. 2.School of Information Science and EngineeringHebei North UniversityZhangjiakouChina
  3. 3.School of Electrical EngineeringSouthwest Jiaotong UniversityChengduChina
  4. 4.College of Physical Science and TechnologySichuan UniversityChengduChina

Personalised recommendations