Electronic Materials Letters

, Volume 15, Issue 3, pp 342–349 | Cite as

Thermoelectric Properties and Chemical Potential Tuning by K- and Se-Coalloying in (Pb0.5Sn0.5)1−xKxTe0.95Se0.05

  • Dianta Ginting
  • Chan-Chieh Lin
  • Gareoung Kim
  • Song Yi Back
  • Bora Won
  • Hyunyong Cho
  • Jae Hyun Yun
  • Hyeon Seob So
  • Hosun Lee
  • Byung-Kyu Yu
  • Sung-Jin Kim
  • Jong-Soo RhyeeEmail author
Original Article - Energy and Sustainability


Topological crystal insulator (TCI) and topological Dirac semimetals have topologically nontrivial surface and bulk state, respectively. The parent compound of Pb0.5Sn0.5Te exhibiting TCI band inversion has particle-hole symmetry owing to the gapless Dirac band implying a strong electron–hole bipolar compensation in Seebeck coefficient. We recently reported that weak perturbation of TCI state can enhance thermoelectric performance significantly due to highly dispersive and degenerated energy bands. It is a great interest that the further increase of chemical potential has beneficiary to thermoelectric performance in the vicinity of topological phase transition. Here we investigate the thermoelectric properties of the co-doping effect by K and Se in (Pb0.5Sn0.5)1−xKxTe0.95Se0.05 (x = 0.0, 0.005, 0.010, 0.015, 0.02) compounds. K-doping increases the band gap from 0.15 eV (Pb0.5Sn0.5Te) to 0.21 eV (x = 0.05) as well as increasing chemical potential resulting in the suppression of bipolar diffusion effect. In spite of the suppression of bipolar diffusion effect by K-doping, the power factor in K-doped compound is decreased significantly than the one of non-doped Pb0.5Sn0.5Te0.95Se0.05 compound. It indicates that when we increase chemical potential further on the breaking of topological band inversion, the thermoelectric performance is deteriorated because the chemical potential resides far from the linear band dispersions which become conventional material. The ZT for the K-doped (Pb0.5Sn0.5)1−xKxTe0.95Se0.05 is obtained as 0.91 at 750 K for x = 0.017 which is increased as much as 99% comparing to the pristine compound Pb0.5Sn0.5Te but it is reduced value (51.5%) comparing to those of Pb0.5Sn0.5Te0.95Se0.05 compound. We believe that this research is valuable on the confirmation that the weak perturbation of topological state and appropriate chemical potential tuning are important criteria in high thermoelectric performance.

Graphical Abstract


Topological crystalline insulator Dirac semimetal Thermoelectric ZT Nano precipitation 



This work was supported by Nano-Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0030147), J.-S. Rhyee was supported by the Materials and Components Technology Development Program of MOTIE/KEIT (10063286), and S.-J. Kim acknowledge support by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government(MSIP) (NRF-2015R1A5A1036133).


  1. 1.
    Liu, W., Jie, Q., Kim, H.S., Ren, Z.: Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater. 87, 357–376 (2015)CrossRefGoogle Scholar
  2. 2.
    Rameshti, B.Z., Asgari, R.: Thermoelectric effects in topological crystalline insulators. Phys. Rev. B 94, 205401 (2016)CrossRefGoogle Scholar
  3. 3.
    Xu, S.Y., Liu, C., Alidoust, N., Neupane, M., Qian, D., Belopolski, I., Denlinger, J.D., Wang, Y.J., Lin, H., Wray, L.A., Landolt, G., Slomski, B., Dil, J.H., Marcinkova, A., Morosan, E., Gibson, Q., Sankar, R., Chou, F.C., Cava, R.J., Bansil, A., Hasan, M.Z.: Observation of a topological crystalline insulator phase and topological phase transition in Pb1-xSnxTe. Nat. Commun. 3, 1192 (2012)CrossRefGoogle Scholar
  4. 4.
    Hsieh, T.H., Lin, H., Liu, J., Duan, W., Bansil, A., Fu, L.: Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012)CrossRefGoogle Scholar
  5. 5.
    Tanaka, Y., Ren, Z., Sato, T., Nakayama, K., Souma, S., Takahashi, T., Segawa, K., Ando, Y.: Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800–803 (2012)CrossRefGoogle Scholar
  6. 6.
    Xu, Y., Gan, Z., Zhang, S.C.: Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators. Phys. Rev. Lett. 112, 226801 (2014)CrossRefGoogle Scholar
  7. 7.
    Pal, K., Anand, S., Waghmare, U.V.: Thermoelectric properties of materials with nontrivial electronic topology. J. Mater. Chem. C 3, 12130–12139 (2015)CrossRefGoogle Scholar
  8. 8.
    LaLonde, A.D., Moran, P.D.: Synthesis and characterization of p-Type Pb0.5Sn0.5Te thermoelectric power generation elements by mechanical alloying. J. Electr. Mater. 39, 8–14 (2009)CrossRefGoogle Scholar
  9. 9.
    Fedorov M.I., Vedernikov M.V., Gurieva E.A., Prokof’eva L.V., Ravich Y.I. In: Electrical activity of metal vacancies in Pbl-xSnxTe solid solutions and thermoelectric properties of compositions for p-type leg of middle-temperature range thermogenerator, Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No.01TH8589), pp. 139–142 (2001)Google Scholar
  10. 10.
    Ginting, D., Lin, C.C., Kim, G., Yun, J.H., Yu, B.K., Kim, S.J., Ahn, K., Rhyee, J.S.: Enhancement of thermoelectric performance via weak disordering of topological crystalline insulator and band convergence by Se alloying in Pb0.5Sn0.5Te1-xSex. J. Mater. Chem. A 6, 5870–5879 (2018)CrossRefGoogle Scholar
  11. 11.
    Lin, C.C., Kim, G., Ginting, D., Ahn, K., Rhyee, J.S.: Enhancement of thermoelectric performances in topological crystal insulator Pb0.7Sn0.3Se via weak perturbation of the topological state and chemical potential tuning by Chlorine doping. ACS Appl. Mater. Interfaces. 10, 10927–10934 (2018)CrossRefGoogle Scholar
  12. 12.
    Ginting, D., Lin, C.C., Rathnam, L., Kim, G., Yun, J.H., So, H.S., Lee, H., Yu, B.K., Kim, S.J., Ahn, K., Rhyee, J.S.: Enhancement of thermoelectric performance in Na-doped Pb0.6Sn0.4Te0.95-xSexS0.05 via breaking the inversion symmetry, band convergence, and nanostructuring by multiple elements doping. ACS Appl. Mater. Interfaces. 10, 11613–11622 (2018)CrossRefGoogle Scholar
  13. 13.
    Ginting, D., Lin, C.C., Rathnam, L., Yu, B.K., Kim, S.J., Orabi, R.A.R.A., Rhyee, J.S.: Enhancement of thermoelectric properties by effective K-doping and nano precipitation in quaternary compounds of (Pb1-xKxTe)0.70(PbSe)0.25(PbS)0.05. RSC Adv. 6, 62958–62967 (2016)CrossRefGoogle Scholar
  14. 14.
    Ginting, D., Lin, C.C., Yun, J.H., Yu, B.K., Kim, S.J., Rhyee, J.S.: High thermoelectric performance by nano-inclusion and randomly distributed interface potential in N-type (PbTe0.93-xSe0.07Clx)0.93(PbS)0.07 composites. J. Mater. Chem. A 5, 13535–13543 (2017)CrossRefGoogle Scholar
  15. 15.
    Korkosz, R.J., Chasapis, T.C., Lo, S.-H., Doak, J.W., Kim, Y.J., Wu, C.-I., Hatzikraniotis, E., Hogan, T.P., Seidman, D.N., Wolverton, C., Dravid, V.P., Kanatzidis, M.G.: High ZT in p-type (PbTe)1–2x(PbSe)x(PbS)x thermoelectric materials. J. Am. Chem. Soc. 136, 3225–3237 (2014)CrossRefGoogle Scholar
  16. 16.
    Kim, Y.M., Lydia, R., Kim, J.-H., Lin, C.-C., Ahn, K., Rhyee, J.-S.: Enhancement of thermoelectric properties in liquid-phase sintered Te-excess bismuth antimony tellurides prepared by hot press sintering. Acta Mater. 135, 297–303 (2017)CrossRefGoogle Scholar
  17. 17.
    Ryu, B., Oh, M.W., Lee, J.K., Lee, J.E., Joo, S.J., Kim, B.S., Min, B.K., Lee, H.W., Park, S.D.: Defects responsible for abnormal n-type conductivity in Ag-excess doped PbTe thermoelectrics. J. Appl. Phys. 118, 015705 (2015)CrossRefGoogle Scholar
  18. 18.
    Dow, H.S., Oh, M.W., Kim, B.S., Park, S.D., Min, B.K., Lee, H.W., Wee, D.M.: Effect of Ag or Sb addition on the thermoelectric properties of PbTe. J. Appl. Phys. 108, 113709 (2010)CrossRefGoogle Scholar
  19. 19.
    Dow, H.S., Oh, M.W., Park, S.D., Kim, B.S., Min, B.K., Lee, H.W., Wee, D.M.: Thermoelectric properties of AgPbmSbTem+2 (12 ≤ m ≤ 26) at elevated temperature. J. Appl. Phys. 105, 113703 (2009)CrossRefGoogle Scholar
  20. 20.
    Lee, M.H., Park, J.H., Park, S.-D., Rhyee, J.-S., Oh, M.-W.: Grain growth mechanism and thermoelectric properties of hot press and spark plasma sintered Na-doped PbTe. J. Alloys Compd. 786, 515–522 (2019)CrossRefGoogle Scholar
  21. 21.
    Kim, J.H., Kim, M.J., Oh, S., Rhyee, J.S.: Thermoelectric properties of Se-deficient and Pb-/Sn-codoped In4Pb0.01Sn0.03Se3−x polycrystalline compounds. J. Alloys Compd. 615, 933–936 (2014)CrossRefGoogle Scholar
  22. 22.
    Abeles, B.: Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131, 1906–1911 (1963)CrossRefGoogle Scholar
  23. 23.
    Girard, S.N., He, J., Zhou, X., Shoemaker, D., Jaworski, C.M., Uher, C., Dravid, V.P., Heremans, J.P., Kanatzidis, M.G.: High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J. Am. Chem. Soc. 133, 16588–16597 (2011)CrossRefGoogle Scholar
  24. 24.
    Rhyee, J.-S., Lee, K.H., Lee, S.M., Cho, E., Kim, S.I., Lee, E., Kwon, Y.S., Shim, J.H., Kotliar, G.: Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals. Nature 459, 965–968 (2009)CrossRefGoogle Scholar
  25. 25.
    Yamini, S.A., Wang, H., Gibbs, Z.M., Pei, Y., Dou, S.X., Snyder, G.J.: Chemical composition tuning in quaternary p-type Pb-chalcogenides- a promising strategy for enhanced thermoelectric performance. Phys. Chem. Chem. Phys. 16, 1835–1840 (2014)CrossRefGoogle Scholar
  26. 26.
    Koh, Y.K., Vineis, C.J., Calawa, S.D., Walsh, M.P., Cahill, D.G.: Lattice thermal conductivity of nanostructured thermoelectric materials based on PbTe. Appl. Phys. Lett. 94, 153101 (2009)CrossRefGoogle Scholar
  27. 27.
    Wu, D., Zhao, L.D., Tong, X., Li, W., Wu, L., Tan, Q., Pei, Y., Huang, L., Li, J.F., Zhu, Y., Kanatzidis, M.G., He, J.: Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy Environ. Sci. 8, 2056–2068 (2015)CrossRefGoogle Scholar
  28. 28.
    Girard, S.N., He, J., Li, C., Moses, S., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G.: In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. Nano Lett. 10, 2825–2831 (2010)CrossRefGoogle Scholar
  29. 29.
    Lee, M.H., Byeon, D.G., Rhyee, J.S., Ryu, B.: Defect chemistry and enhancement of thermoelectric performance in Ag-doped Sn1+δ-xAgxTe. J. Mater. Chem. A 5, 2235–2242 (2017)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Dianta Ginting
    • 1
    • 2
  • Chan-Chieh Lin
    • 1
  • Gareoung Kim
    • 1
  • Song Yi Back
    • 1
  • Bora Won
    • 1
  • Hyunyong Cho
    • 1
  • Jae Hyun Yun
    • 1
  • Hyeon Seob So
    • 1
  • Hosun Lee
    • 1
  • Byung-Kyu Yu
    • 3
  • Sung-Jin Kim
    • 3
  • Jong-Soo Rhyee
    • 1
    Email author
  1. 1.Department of Applied Physics and Institute of Natural SciencesKyung Hee UniversityYong-inSouth Korea
  2. 2.Department of Mechanical EngineeringUniversitas Mercu BuanaJakartaIndonesia
  3. 3.Department of Chemistry and Nano SciencesEwha Womans UniversitySeoulSouth Korea

Personalised recommendations