Electronic Materials Letters

, Volume 15, Issue 3, pp 297–302 | Cite as

Switching Behaviors of Ferroelectric and Relaxor Polymer Blend Films

  • Hyeon Jun Lee
  • Ji Young JoEmail author
Original Article - Electronics, Magnetics and Photonics


Ferroelectric polymer blend film with non-polar relaxor polymer shows composition dependency of switching behaviors. Studies of ferroelectric properties in polymer blend films with increase volume fraction of relaxor polymer revealed inversely decrease both remnant polarization and coercive voltage, simultaneously. The reduced coercive voltage of the blend with films with higher volume fraction of realxor polymer relative to that of pure ferroelectric film is consistent with the high frequency of applied voltage. Nanoscale ferroelectric polarization switching of blend film was also faster than that of pure ferroelectric film.

Graphical Abstract


Ferroelectric polymer Composite polymer Non-volatile memory Ferroelectric switching 



J.Y.J. acknowledges support through Grants from the National Research Foundation of Korea (NRF) funded by the Korean government (NRF-2016R1D1A1A02937051, NRF-2017K1A3A7A09016388, and 2017M3D1A1040828), MSIP and PAL, GRI (GIST Research Institute) Project by GIST and National Strategic Project-Fine particle of the NRF supported by the Ministry of Science and ICT (MSIT), the Ministry of Environment (ME), and the Ministry of Health and Welfare (MOHW). (2017M3D8A1091937) H.J.L. acknowledges support by the NRF under the Grant 2017R1A6A3A11030959.


  1. 1.
    Kusuma, D.Y., Lee, P.S.: Ferroelectric tunnel junction memory devices made from monolayers of vinylidene fluoride oligomers. Adv. Mater. 24, 4163–4169 (2012)CrossRefGoogle Scholar
  2. 2.
    Shin, E.-Y., Cho, H.J., Jung, S., Yang, C., Noh, Y.-Y.: A high-k fluorinated P(VDF–TrFE)-g-PMMA gate dielectric for high-performance flexible field-effect transistors. Adv. Func. Mater. 28, 1704780 (2018)CrossRefGoogle Scholar
  3. 3.
    Hwang, S.K., Bae, I., Kim, R.H., Park, C.: Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation. Adv. Mater. 24, 5910–5914 (2012)CrossRefGoogle Scholar
  4. 4.
    Naber, R.C.G., Tanase, C., Blom, P.W.M., Gelinck, G.H., Marsman, A.W., Touwslager, F.J., Setayesh, S., de Leeuw, D.M.: High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater. 4, 243 (2005)CrossRefGoogle Scholar
  5. 5.
    Lee, H.J., Kim, Y.-J., Lee, E., Yao, K., Jo, J.Y.: Topography engineering of ferroelectric crystalline copolymer film. Org. Electron. 15, 751–757 (2014)CrossRefGoogle Scholar
  6. 6.
    Horiuchi, S., Tokura, Y.: Organic ferroelectrics. Nat. Mater. 7, 357 (2008)CrossRefGoogle Scholar
  7. 7.
    Hu, W.J., Juo, D.-M., You, L., Wang, J., Chen, Y.-C., Chu, Y.-H., Wu, T.: Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films. Sci. Rep. 4, 4772 (2014)CrossRefGoogle Scholar
  8. 8.
    Fujisaki, S., Ishiwara, H., Fujisaki, Y.: Low-voltage operation of ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer capacitors and metal-ferroelectric-insulator-semiconductor diodes. Appl. Phys. Lett. 90, 162902 (2007)CrossRefGoogle Scholar
  9. 9.
    Xu, H., Zhong, J., Liu, X., Chen, J., Shen, D.: Ferroelectric and switching behavior of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface. Appl. Phys. Lett. 90, 092903 (2007)CrossRefGoogle Scholar
  10. 10.
    Naber, R.C.G., de Boer, B., Blom, P.W.M., de Leeuw, D.M.: Low-voltage polymer field-effect transistors for nonvolatile memories. Appl. Phys. Lett. 87, 203509 (2005)CrossRefGoogle Scholar
  11. 11.
    Lee, H.J., Kim, J., Kwon, O., Lee, H.J., Kwak, J.H., Kim, J.M., Lee, S.S., Kim, Y., Kim, D.-Y., Jo, J.Y.: Low coercive field of polymer ferroelectric via x-ray induced phase transition. Appl. Phys. Lett. 107, 262902 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhang, Q.M., Bharti, V., Zhao, X.: Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101 (1998)CrossRefGoogle Scholar
  13. 13.
    Park, S.-E., Shrout, T.R.: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997)CrossRefGoogle Scholar
  14. 14.
    Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)CrossRefGoogle Scholar
  15. 15.
    Naber, R.C.G., de Boer, B., Blom, P.W.M., de Leeuw, D.M.: High charge density and mobility in poly(3-hexylthiophene) using a polarizable gate dielectric. Org. Electron. 7, 132–136 (2006)CrossRefGoogle Scholar
  16. 16.
    Nguyen, C.A., Mhaisalkar, S.G., Ma, J., Lee, P.S.: Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene) dielectric. Org. Electron. 9, 1087–1092 (2008)CrossRefGoogle Scholar
  17. 17.
    So, Y.W., Kim, D.J., Noh, T.W., Yoon, J.G., Song, T.K.: Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films. Appl. Phys. Lett. 86, 092905 (2005)CrossRefGoogle Scholar
  18. 18.
    Yang, S.M., Jo, J.Y., Kim, T.H., Yoon, J.G., Song, T.K., Lee, H.N., Marton, Z., Park, S., Jo, Y., Noh, T.W.: AC dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops. Phys. Rev. B 82, 174125 (2010)CrossRefGoogle Scholar
  19. 19.
    Jo, J.Y., Kim, D.J., Kim, Y.S., Choe, S.-B., Song, T.K., Yoon, J.-G., Noh, T.W.: Polarization switching dynamics governed by the thermodynamic nucleation process in ultrathin ferroelectric films. Phys. Rev. Lett. 97, 247602 (2006)CrossRefGoogle Scholar
  20. 20.
    Jesse, S., Rodriguez, B.K., Choudhury, S., Baddorf, A.P., Vrejoiu, I., Hesse, D., Alexe, M., Eliseev, E.A., Morozovska, A.N., Zhang, J., Chen, L.-Q., Kalinin, S.V.: Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nat. Mater. 7, 209–215 (2008)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuSouth Korea

Personalised recommendations