Advertisement

Electronic Materials Letters

, Volume 15, Issue 3, pp 323–330 | Cite as

High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics

  • Ajeet Kumar
  • So Hyeon Kim
  • Mahesh Peddigari
  • Dong-Hyuk Jeong
  • Geon-Tae HwangEmail author
  • Jungho RyuEmail author
Original Article - Energy and Sustainability
  • 185 Downloads

Abstract

In this study, electric energy storage properties of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 (PLZT 11/70/30) relaxor ceramics were investigated. XRD pattern and SEM image confirms the perovskite phase and dense structure without any secondary phases and pores, respectively. Room temperature dielectric constant was found to be high (~ 3520) with low dielectric loss (~ 0.03). Dielectric constant changes with temperature confirm the relaxor ferroelectric behaviour of PLZT ceramics. Different parameters such as degree of deviation (ΔTm) from the Curie–Weiss law, the diffuseness of the phase transition (ΔTdiff) and degree of diffuseness (γ), which are related to the relaxor nature of ferroelectrics were calculated. With the remarkably slim polarization versus electric field hysteresis loops even at high applied electric field, high energy storage of 0.85 J/cm3 and very high energy storage efficiency of 92.9% were obtained from the PLZT ceramics. These values suggest that the PLZT 11/70/30 composition can be used for the pulse driving energy storage applications.

Graphical Abstract

Keywords

PLZT Relaxor Ferroelectric Energy storage Capacitor 

Notes

Acknowledgements

This study was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1A2B4011663).

References

  1. 1.
    Ortega, N., Kumar, A., Scott, J.F., Chrisey, D.B., Tomazawa, M., Kumari, S., Diestra, D.G.B., Katiyar, R.S.: Relaxor-ferroelectric superlattices: high energy density capacitors. J. Phys.: Condens. Matter 24, 445901 (2012)Google Scholar
  2. 2.
    Tong, S., Ma, B., Narayanan, M., Liu, S., Koritala, R., Balachandran, U., Shi, D.: Lead lanthanum zirconate titanate ceramic thin films for energy storage. ACS Appl. Mater. Interfaces. 5, 1474–1480 (2013)CrossRefGoogle Scholar
  3. 3.
    Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Hwang, C.S.: Thin HfxZr1−xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 1400610 (2014)CrossRefGoogle Scholar
  4. 4.
    Yang, D., Kang, S.-B., Lim, J.-H., Yoon, S., Ryu, J., Choi, J.-J., Velayutham, T.S., Kim, H., Jeong, D.-Y.: Energy storage properties of Dy3+ doped Sr0.5Ba0.5Nb2O6 thick film with nano-size grains. Met. Mater. Int. 23(5), 1045–1049 (2017)CrossRefGoogle Scholar
  5. 5.
    Peddigari, M., Palneedi, H., Hwang, G.-T., Ryu, J.: Linear and nonlinear dielectric ceramics for high-power energy storage capacitor applications. J. Korean Ceram. Soc. 56(1), 1–23 (2019)CrossRefGoogle Scholar
  6. 6.
    Gao, J., Liu, Y., Wang, Y., Wang, D., Zhong, L., Ren, X.: High temperature-stability of (Pb0.9La0.1)(Zr0.65Ti0.35)O3 ceramic for energy-storage applications at finite electric field strength. Scripta Mater. 137, 114–118 (2017)CrossRefGoogle Scholar
  7. 7.
    Liu, Z., Dong, X., Liu, Y., Cao, F., Wang, G.: Electric field tunable thermal stability of energy storage properties of PLZST antiferroelectric ceramics. J. Am. Ceram. Soc. 100, 2382–2386 (2017)CrossRefGoogle Scholar
  8. 8.
    Tang, Z., Ge, J., Ni, H., Lu, B., Tang, X.-G., Lu, S.-G., Tang, M., Gao, J.: High energy-storage density of lead-free BiFeO3 doped Na0.5Bi0.5TiO3–BaTiO3 thin film capacitor with good temperature stability. J. Eur. Ceram. Soc. 38, 2511–2519 (2018)CrossRefGoogle Scholar
  9. 9.
    Peddigari, M., Palneedi, H., Hwang, G.-T., Lim, K.W., Kim, G.-Y., Jeong, D.-Y., Ryu, J.: Boosting the recoverable energy density of lead-free ferroelectric ceramic thick films through artificially induced quasi-relaxor behavior. ACS Appl. Mater. Interfaces. 10, 20720–20727 (2018)CrossRefGoogle Scholar
  10. 10.
    Fan, Q., Liua, M., Mab, C., Wanga, L., Rena, S., Lua, L., Lou, X., Jia, C.-L.: Significantly enhanced energy storage density with superior thermal stability by optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure. Nano Energy 51, 539–545 (2018)CrossRefGoogle Scholar
  11. 11.
    Park, C.-K., Lee, S.H., Lim, J.-H., Ryu, J., Choi, D.H., Jeong, D.-Y.: Nano-size grains and high density of 65PMN-35PT thick film for high energy storage capacitor. Ceram. Int. 44, 20111–20114 (2018)CrossRefGoogle Scholar
  12. 12.
    Wang, C., Zhang, J., Gong, S., Ren, K.: Significantly enhanced breakdown field for core-shell structured poly(vinylidene fluoride-hexafluoropropylene)/TiO2 nanocomposites for ultra-high energy density capacitor applications. J. Appl. Phys. 124, 154103 (2018)CrossRefGoogle Scholar
  13. 13.
    Jinxi, Z., Du, X., Wang, C., Ren, K.: Poly(vinylidene fluoride-hexafluoropropylene) based blend film for ultrahigh energy density capacitor applications. J. Phys. D Appl. Phys. 51(25), 255306 (2018)CrossRefGoogle Scholar
  14. 14.
    Palneedi, H., Peddigari, M., Hwang, G.-T., Jeong, D.-Y., Ryu, J.: High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018)CrossRefGoogle Scholar
  15. 15.
    Yao, Z., Song, Z., Hao, H., Yu, Z., Cao, M., Zhang, S., Lanagan, M.T., Liu, H.: Homogeneous/inhomogeneous structured dielectrics and their energy-storage performances. Adv. Mater. 29(20), 1601727 (2017)CrossRefGoogle Scholar
  16. 16.
    Randall, C.A., Ogihara, H., Kim, J.R., Yang, G.Y., Stringer, C.S., McKinstry, S.T., Lanagan, M.: 17th IEEE International Pulsed Power Conference Washington D.C., USA 2009, p. 346Google Scholar
  17. 17.
    Li, Q., Yao, F.-Z., Liu, Y., Zhang, G., Wang, H., Wang, Q.: High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018)CrossRefGoogle Scholar
  18. 18.
    Liu, Z., Chen, X., Peng, W., Xu, C., Dong, X., Cao, F., Wang, G.: Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106, 262901 (2015)CrossRefGoogle Scholar
  19. 19.
    Holger, G.W., Podeyn, F., Weise, H.G.G.: High energy density capacitors for ETC gun applications. IEEE Trans. Magn. 37, 332 (2001)CrossRefGoogle Scholar
  20. 20.
    Fan, H., Peng, B., Zhang, Q.: Preparation and field-induced electrical properties of perovskite relaxor ferroelectrics. Trans. Electr. Electron. Mater. 16(1), 1–4 (2015)CrossRefGoogle Scholar
  21. 21.
    Hao, X.: A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3(1), 1330001 (2013)CrossRefGoogle Scholar
  22. 22.
    Lin, Z., Chen, Y., Liu, Z., Wang, G., Rémiens, D., Dong, X.: Large energy storage density, low energy loss and highly stable (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 antiferroelectric thin-film capacitors. J. Eur. Ceram. Soc. 38, 3177–3181 (2018)CrossRefGoogle Scholar
  23. 23.
    Baek, S.H., Rzchowski, M.S., Aksyuk, V.A.: Giant piezoelectricity in PMN–PT thin films: beyond PZT. MRS Bull. 37, 1022 (2012)CrossRefGoogle Scholar
  24. 24.
    Plonska, M., Surowiak, Z.: Piezoelectric properties of x/65/35 PLZT ceramics depended of the lanthanum (x) ions contents. Mol. Quantum Acoust. 27, 207 (2006)Google Scholar
  25. 25.
    Parashar, S.K.S., Parashar, K.: Nano-scale effects on structural and giant dielectric of PZT synthesized by high energy ball mill. Integr. Ferroelectr. 121, 106–112 (2010)CrossRefGoogle Scholar
  26. 26.
    Lu, B., Li, P., Tang, Z., Yao, Y., Gao, X., Kleemann, W., Lu, S.-G.: Large electrocaloric effect in relaxor ferroelectric and antiferroelectric lanthanum doped lead zirconate titanate ceramics. Sci. Rep. 7, 45335 (2017)CrossRefGoogle Scholar
  27. 27.
    Haertling, G.H.: Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)CrossRefGoogle Scholar
  28. 28.
    Fu, S.L., Cheng, S.Y., Wei, C.C.: Effects of doping pairs on the preparation and dielectricity of PLZT ceramics. Ferroelectrics 67, 93–102 (1986)CrossRefGoogle Scholar
  29. 29.
    Uchino, K., Nomura, S.: Critical exponents of the dielectric constants in diffused phase transition crystals. Ferroelectr. Lett. 44(3), 55–61 (1982)CrossRefGoogle Scholar
  30. 30.
    Kumar, A., Raju, K.C.J., James, A.R.: Diffuse phase transition in mechanically activated (Pb1−xLax)(Zr0.60Ti0.40)O3 electro-ceramics. J. Mater. Sci.: Mater. Electron. 28, 13928–13936 (2017)Google Scholar
  31. 31.
    Viehland, D., Wutting, M., Cross, L.E.: The glassy behavior of relaxor ferroelectrics. Ferroelectrics 120, 71–77 (1991)CrossRefGoogle Scholar
  32. 32.
    Kumar, A., Raju, K.C.J., James, A.R.: Micro-structural, dielectric, ferroelectric and piezoelectric properties of mechanically processed (Pb1−xLax)(Zr0.60Ti0.40)O3 ceramics. J. Mater. Sci.: Mater. Electron. 29, 13483–13494 (2018)Google Scholar
  33. 33.
    Oh, H.-T., Lee, J.-Y., Lee, H.-Y.: Mn-modified PMN-PZT [Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3] single crystals for high power piezoelectric transducers. J. Korean Ceram. Soc. 54(2), 150–157 (2017)CrossRefGoogle Scholar
  34. 34.
    Zhang, S., Li, F., Yu, F., Jiang, X., Lee, H.-Y., Luo, J., Shrout, T.R.: Recent developments in piezoelectric crystals. J. Korean Ceram. Soc. 55(5), 419–439 (2018)CrossRefGoogle Scholar
  35. 35.
    Kim, H.-P., Ahn, C.W., Hwang, Y., Lee, H.-Y., Jo, W.: Strategies of a potential importance, making lead-free piezoceramics truly alternative to PZTs. J. Korean Ceram. Soc. 54, 86–95 (2017)CrossRefGoogle Scholar
  36. 36.
    Kang, J.-K., Dinh, T.H., Lee, C.-H., Han, H.-S., Lee, J.-S., Tran, V.D.N.: Comparative study of conventional and microwave sintering of large strain Bi-based perovskite ceramics. Trans. Electr. Electron. Mater. 18(1), 1–6 (2017)CrossRefGoogle Scholar
  37. 37.
    Kumar, A., Prasad, V.V.B., James Raju, K.C.J., James, A.R.: Lanthanum induced diffuse phase transition in high energy mechanochemically processed and poled PLZT 8/60/40 ceramics. J. Alloys Comp. 654, 95–102 (2016)CrossRefGoogle Scholar
  38. 38.
    Burns, G., Dacol, F.H.: Ferroelectrics with a glassy polarization phase. Ferroelectrics 104, 25–35 (1990)CrossRefGoogle Scholar
  39. 39.
    Kleemann, W.: Cluster glass ground state via random fields and random bonds. Phys. Status Solidi B 251, 1993–2002 (2014)CrossRefGoogle Scholar
  40. 40.
    Pirc, R., Kutnjak, Z., Blinc, R., Zhang, Q.M.: Upper bounds on the electrocaloric effect in polar solids. Appl. Phys. Lett. 98, 021909 (2011)CrossRefGoogle Scholar
  41. 41.
    Wang, X., Shen, J., Yang, T., Xiao, Z., Dong, Y.: Phase transition and energy storage performance in Ba-doped PLZST antiferroelectric ceramics. J. Mater. Sci.: Mater. Electron. 26, 9200–9204 (2015)Google Scholar
  42. 42.
    Wang, J., Yang, T., Chen, S., Yao, X.: Small hysteresis and high energy storage power of antiferroelectric ceramics. Funct. Mater. Lett. 7(1), 1350064 (2014)CrossRefGoogle Scholar
  43. 43.
    Zhang, L., Jiang, S., Fan, B., Zhang, G.: Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3 (Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics by Spark Plasma Sintering. J. Alloys Compd. 622, 162–165 (2015)CrossRefGoogle Scholar
  44. 44.
    Xu, R., Xu, Z., Feng, Y., Tian, J., Huang, D.: Energy storage and release properties of Sr doped (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. Ceram. Int. 42, 12875–12879 (2016)CrossRefGoogle Scholar
  45. 45.
    Zhang, Q., Tong, H., Chen, J., Lu, Y., Yang, T., Yao, X., He, Y.: High recoverable energy density over a wide temperature range in Sr modified (Pb, La) (Zr, Sn, Ti)O3 antiferroelectric ceramics with an orthorhombic phase. Appl. Phys. Lett. 109, 262901 (2016)CrossRefGoogle Scholar
  46. 46.
    Zhang, T.-F., Tang, X.-G., Huang, X.X., Liu, Q.-X., Jiang, Y.-P., Zhou, Q.F.: High-temperature dielectric relaxation behaviors of relaxer like PbZrO3–SrTiO3 ceramics for energy-storage applications. Energy Technol. 4(5), 633–640 (2016)CrossRefGoogle Scholar
  47. 47.
    Zhang, T.-F., Tang, X.-G., Liu, Q.X., Jiang, Y.-P., Huang, X.X., Zhou, Q.F.: Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 Ceramics. J. Phys. D Appl. Phys. 49(9), 095302 (2016)CrossRefGoogle Scholar
  48. 48.
    Li, B., Liu, Q.-X., Tang, X.-G., Zhang, T.-F., Jiang, Y.-P., Li, W.-H., Luo, J.: Antiferroelectric to relaxor ferroelectric phase transition in PbO modified (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics with a large energy-density for dielectric energy storage. RSC Adv. 7(68), 43327–43333 (2017)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYeungnam UniversityGyeongsanSouth Korea
  2. 2.Functional Ceramics GroupKorea Institute of Material ScienceChangwonSouth Korea

Personalised recommendations