Advertisement

Electronic Materials Letters

, Volume 15, Issue 3, pp 357–362 | Cite as

Selection of CVD Diamond Crystal Size on a CVD Pad Conditioner for Improved Lifetime

  • Heon-Yul Ryu
  • Ji-Woo Kim
  • Da-Bin Hyun
  • Yeo-Ho Kim
  • Jung-Hwan Lee
  • Jin-Goo ParkEmail author
Original Article - Nanomaterials
  • 105 Downloads

Abstract

Pad conditioners are important consumables for semiconductor chemical mechanical planarization processes. Recently, a new concept has been developed to improve the performance and lifetime of a pad conditioner by depositing diamond film on a uniformly patterned substrate. In this study, we investigated the pad conditioner lifetime while varying the crystal size of the deposited diamond film, which was controlled via different methane (CH4) gas concentrations in hydrogen gas (H2). Microcrystalline diamond (MCD) film was formed using 2% CH4 in H2 flow and nanocrystalline diamond film (NCD) was formed with 4% CH4. The NCD film showed a longer lifetime and higher adhesion with the substrate than the MCD film.

Graphical Abstract

Keywords

CMP pad conditioner CVD conditioner Diamond crystal size Raman spectroscopy Conditioner lifetime 

Notes

Acknowledgements

This research was supported by Ansan-Si hidden champion fostering and supporting project funded by Ansan city.

References

  1. 1.
    Park, J.Y., Eom, D.H., Lee, S.H., Myung, B.Y., Lee, S.I., Park, J.G.: Physical and chemical characteristics of the ceramic conditioner in chemical mechanical planarization. Key Eng. Mater. 238–2, 223–228 (2003)CrossRefGoogle Scholar
  2. 2.
    Kim, Y.C., Kang, S.J.L.: Novel CVD diamond-coated conditioner for improved performance in CMP processes. Int. J. Mach. Tools Manuf. 51(6), 565–568 (2011).  https://doi.org/10.1016/j.ijmachtools.2011.02.008 CrossRefGoogle Scholar
  3. 3.
    Choi, J.H., Lee, Y.B., Kim, B.K.: CVD diamond-coated CMP polishing pad conditioner with asperity height variation. In: International Conference on Planarization/CMP Technology (ICPT 2012) 2012, pp. 1-5. VDEGoogle Scholar
  4. 4.
    Tseng, W.T., Rafie, S., Ticknor, A., Devarapalli, V., Truong, C., Majors, C., Zabasajja, J., Sokol, J., Laraia, V., Fritz, M.: Microreplicated conditioners for Cu barrier chemical–mechanical planarization (CMP). ECS J. Solid State Sci. Technol. 4(11), P5001–P5007 (2015).  https://doi.org/10.1149/2.0011511jss CrossRefGoogle Scholar
  5. 5.
    Qin, F., Hu, J., Chou, Y.K., Thompson, R.G.: Delamination wear of nano-diamond coated cutting tools in composite machining. Wear 267(5–8), 991–995 (2009).  https://doi.org/10.1016/j.wear.2008.12.065 CrossRefGoogle Scholar
  6. 6.
    Booth, L., Catledge, S.A., Nolen, D., Thompson, R.G., Vohra, Y.K.: Synthesis and characterization of multilayered diamond coatings for biomedical implants. Materials 4(5), 857–868 (2011).  https://doi.org/10.3390/ma4050857 CrossRefGoogle Scholar
  7. 7.
    Shen, B., Sun, F.H.: The cutting performance of ultra-smooth composite diamond coated WC–Co inserts in dry turning Al/SiC–MMC. In: Advanced Materials Research 2011, pp. 400–405. Trans Tech PublGoogle Scholar
  8. 8.
    Haubner, R., Kubelka, S., Lux, B., Griesser, M., Grasserbauer, M.: Murakami and H2SO4/H2O2 pretreatment of WC–Co hard metal substrates to increase the adhesion of CVD diamond coatings. J. Phys. IV 5(C5), 753–760 (1995).  https://doi.org/10.1051/jphyscol:1995589 Google Scholar
  9. 9.
    Chandran, M., Hoffman, A.: Diamond film deposition on WC–Co and steel substrates with a CrN interlayer for tribological applications. J. Phys. D Appl. Phys. 49(21), 213002 (2016).  https://doi.org/10.1088/0022-3727/49/21/213002 CrossRefGoogle Scholar
  10. 10.
    Tsai, C.H., Ono, T., Esashi, M.: Fabrication of diamond Schottky emitter array by using electrophoresis pre-treatment and hot-filament chemical vapor deposition. Diam. Relat. Mat. 16(4–7), 1398–1402 (2007).  https://doi.org/10.1016/j.diamond.2006.11.032 CrossRefGoogle Scholar
  11. 11.
    Sarangi, S.K., Chattopadhyay, A., Chattopadhyay, A.K.: Effect of pretreatment, seeding and interlayer on nucleation and growth of HFCVD diamond films on cemented carbide tools. Int. J. Refract. Met. Hard Mat. 26(3), 220–231 (2008).  https://doi.org/10.1016/j.ijrmhm.2007.05.002 CrossRefGoogle Scholar
  12. 12.
    Din, S., Shah, M., Sheikh, N.: Effect of CVD-diamond on the tribological and mechanical performance of titanium alloy (Ti6Al4V). Tribol. Ind. 38(4), 530–542 (2016)Google Scholar
  13. 13.
    Zhang, T., Zou, Y.: The effect of deposition parameters on the growth rate of microcrystalline diamond powders synthesized by HFCVD method. Coatings 7(7), 95 (2017).  https://doi.org/10.3390/coatings7070095 CrossRefGoogle Scholar
  14. 14.
    Liu, H.M., Dandy, D.S.: Studies on nucleation process in diamond CVD: an overview of recent developments. Diam. Relat. Mat. 4(10), 1173–1188 (1995).  https://doi.org/10.1016/0925-9635(96)00297-2 CrossRefGoogle Scholar
  15. 15.
    Knight, D.S., White, W.B.: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4(2), 385–393 (1989)CrossRefGoogle Scholar
  16. 16.
    Sun, Z., Shi, J.R., Tay, B.K., Lau, S.P.: UV Raman characteristics of nanocrystalline diamond films with different grain size. Diam. Relat. Mat. 9(12), 1979–1983 (2000).  https://doi.org/10.1016/s0925-9635(00)00349-6 CrossRefGoogle Scholar
  17. 17.
    Huang, S.M., Hong, F.C.N.: Low temperature growths of nanocrystalline diamond films by plasma-assisted hot filament chemical vapor deposition. Surf. Coat. Technol. 200(10), 3160–3165 (2006).  https://doi.org/10.1016/j.surfcoat.2005.07.035 CrossRefGoogle Scholar
  18. 18.
    May, P.W., Smith, J.A., Rosser, K.N.: 785 nm Raman spectroscopy of CVD diamond films. Diam. Relat. Mat. 17(2), 199–203 (2008).  https://doi.org/10.1016/j.diamond.2007.12.013 CrossRefGoogle Scholar
  19. 19.
    Ager, J.W., Drory, M.D.: Quantitative measurement of residual biaxial stress by Raman spectroscopy in diamond grown on a ti alloy by chemical vapor deposition. Phys. Rev. B 48(4), 2601–2607 (1993).  https://doi.org/10.1103/PhysRevB.48 CrossRefGoogle Scholar
  20. 20.
    Chandran, M., Kumaran, C.R., Gowthama, S., Shanmugam, P., Natarajan, R., Bhattacharya, S.S., Rao, M.S.R.: Chemical vapor deposition of diamond coatings on tungsten carbide (WC–Co) riveting inserts. Int. J. Refract. Met. Hard Mat. 37, 117–120 (2013).  https://doi.org/10.1016/j.ijrmhm.2012.11.005 CrossRefGoogle Scholar
  21. 21.
    Campos, R.A., Contin, A., Trava-Airoldi, V.J., Barquete, D.M., Moro, J.R., Corat, E.J.: Influence of bonding process in adhesion of CVD diamond films on tungsten carbide substrates. Mater. Res. Iberam. J. Mater. 18(5), 925–930 (2015).  https://doi.org/10.1590/1516-1439.331014 Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of BionanotechnologyHanyang University ERICAAnsanRepublic of Korea
  2. 2.Department of Materials Science and Chemical EngineeringHanyang University ERICAAnsanRepublic of Korea
  3. 3.SAESOL Diamond Ind. Co., Ltd.AnsanRepublic of Korea

Personalised recommendations