Skip to main content
Log in

ZrO2 Nanoparticle Embedded Low Silver Lead Free Solder Alloy for Modern Electronic Devices

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this article, the authors present the synthesis of Sn–1.0Ag–0.5Cu (SAC105) alloy embedded with zirconium oxide nanoparticles using simple mechanical blending and casting route. The cast samples were characterized in terms of microstructural evolution, wetting, microhardness, and drop test reliability. The characterizations were performed by using a tabletop X-ray diffraction, field emission scanning electron microscope, and the compositions were identified by energy dispersive spectroscopy. The results showed that addition of ZrO2 nanoparticles significantly refines the grain size, Ag3Sn, and Cu6Sn5 intermetallic compounds thickness by 46, 14, and 26% respectively as compared to the single component SAC105 alloy. The results were also compared with those of standard Sn–3.0Ag–0.5Cu (SAC305) alloy. Although the spreading and microhardness of SAC105 is found to be slightly poor or comparable to SAC305 yet drop test reliability can be improved significantly after addition of ZrO2 nanoparticles appreciably. This kind of refinement results in a cheap alternative to SAC305 with comparable mechanical strength and high solder joint reliability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abtew, M., Selvaduray, G.: Lead-free solders in microelectronics. Mater. Sci. Eng. R 27, 95 (2000)

    Article  Google Scholar 

  2. Zeng, K., Tu, K.N.: Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater. Sci. Eng. R 38, 55 (2002)

    Article  Google Scholar 

  3. Sharma, A., Das, S., Das, K.: Pulse electrodeposition of lead-free tin-based composites for microelectronic packaging. In: Mohamed, A.M.A. (ed.) Electrodeposition of Composite Materials, pp. 253–274. InTech, Croatia (2016). https://doi.org/10.5772/62036. http://www.intechopen.com

  4. Suganuma, K.: Advances in lead-free electronics soldering. Curr. Opin. Solid State. Mater. 5, 55 (2001)

    Article  Google Scholar 

  5. Sharma, A., Das, S., Das, K.: Pulse electroplating of ultrafine grained tin coating. In: Aliofkhazraei, M. (ed.) Electroplating of Nanostructures, pp. 105–129. InTech, Croatia (2015). https://doi.org/10.5772/61255

    Google Scholar 

  6. Lee, H.Y., Sharma, A., Kee, S.H., Lee, Y.W., Moon, J.T., Jung, J.P.: Effect of aluminium additions on wettability and intermetallic compound (IMC) growth of lead free Sn–2wt%Ag–5wt%Bi soldered joints. Electron. Mater. Lett. 10, 997 (2014)

    Article  Google Scholar 

  7. Pandher, R., Lawlor, T.: Effect of silver in common lead-free alloys. In: Proceedings of International Conference on Soldering and Reliability, ICSR 2009, Toronto, Canada (2009)

  8. Shen, J., Chan, Y.C.: Research advances in nano-composite solders. Microelectron. Reliab. 49, 223 (2009)

    Article  Google Scholar 

  9. Xiang, K.K., Haseeb, A.S.M.A., Arafat, M.M., Yingxin, G.: Effects of Mn nanoparticles on wettability and intermetallic compounds in between Sn–3.8Ag–0.7Cu and Cu substrate during multiple reflow. In: Proceedings of 4th Asia Symposium on Quality Electronic Design, pp. 297–301. IEEE, Penang, Malaysia (2012)

  10. Nishikawa, H., Komatsu, A., Takemoto, T.: Effect of Ni or Co addition to Sn–Ag solder on microstructure and joint strength at interface. Mater. Trans. 49(7), 1518 (2008)

    Article  Google Scholar 

  11. Kim, S.H., Yu, J.: Effects of Fe on the Kirkendall void formation of Sn–3.5Ag–xFe/Cu solder joints. In: International Symposium on Microelectronics, Vol. 2010, no. 1, pp. 000294–000297, FALL 2010 (2010)

  12. Wang, J.X., Xue, S.B., Han, Z.J., Yu, S.L., Chen, Y., Shi, Y.P., Wang, H.: Effects of rare earth Ce on microstructures, solderability of Sn–Ag–Cu and Sn–Cu–Ni solders as well as mechanical properties of soldered joints. J. Alloys Compd. 467, 219 (2009)

    Article  Google Scholar 

  13. Nadia, A., Haseeb, A.S.M.A.: Understanding the effects of addition of copper nanoparticles to Sn–3.5Ag solder. Solder. Surf. Mt. Technol. 23, 68 (2011)

    Article  Google Scholar 

  14. Koscielski, M., Bukat, K., Jakubowska, M., Mlozniak, A.: Application of silver nanoparticles to improve wettability of SnAgCu solder paste. In: Proceedings of the 33rd International Seminar on Electronic Technology, pp. 473–477. IEEE, Poland (2010)

  15. Gain, A.K., Chan, Y.C., Yung, W.K.C.: Effect of additions of ZrO2 nano-particles on the microstructure and shear strength of Sn–Ag–Cu solder on Au/Ni metallized Cu pads. Microelectron. Reliab. 51, 2306 (2011)

    Article  Google Scholar 

  16. Zhong, X.L., Gupta, M.: Development of lead-free Sn–0.7Cu/Al2O3 nanocomposite solders with superior strength. J. Phys. D Appl. Phys. 41, 095403 (2008)

    Article  Google Scholar 

  17. Gain, A.K., Chan, Y.C., Yung, W.K.C.: Microstructure, thermal analysis and hardness of a Sn–Ag–Cu–1 wt% nano-TiO2 composite solder on flexible ball grid array substrates. Microelectron. Reliab. 51, 975 (2011)

    Article  Google Scholar 

  18. Liu, P., Yao, P., Liu, J.: Effect of SiC nanoparticle additions on microstructure and microhardness of Sn–Ag–Cu solder alloy. Electron. Mater. 37, 874 (2008)

    Article  Google Scholar 

  19. Mohd Salleh, M.A.A., Mustafa Al Bakri, A.M., Kamarudin, H., Bnhussain, M., Zan@Hazizi, M.H., Somidin, F.: Solderability of Sn–0.7Cu/Si3N4 lead-free composite solder on Cu-substrate. Phys. Proc. 22, 299 (2011)

    Article  Google Scholar 

  20. Babaghorbani, P., Nai, S.M.L., Gupta, M.: Development of lead-free Sn-3.5Ag/SnO2 nanocomposite solders. J. Mater. Sci. Mater. Electron. 20, 571 (2009)

    Article  Google Scholar 

  21. Fawzy, A., Fayek, S.A., Sobhy, M., Nassr, E., Mousa, M., Saad, G.: Effect of ZnO nanoparticles addition on thermal, microstructure and tensile properties of Sn–3.5 Ag–0.5 Cu (SAC355) solder alloy. J. Mater. Sci. Mater. Electron. 24, 3210 (2013)

    Article  Google Scholar 

  22. Sharma, A., Bhattacharya, S., Das, S., Fecht, H.J., Das, K.: Development of lead free pulse electrodeposited tin based composite solder coating reinforced with ex situ cerium oxide nanoparticles. J. Alloys Compd. 574, 609 (2013)

    Article  Google Scholar 

  23. Sharma, A., Bhattacharya, S., Das, S., Das, K.: Fabrication of Sn–Ag/CeO2 electro-composite solder by pulse electrodeposition. Metall. Mater. Trans. A 44A, 5587 (2013)

    Article  Google Scholar 

  24. Sharma, A., Baek, B.G., Jung, J.P.: Influence of La2O3 nanoparticle additions on microstructure, wetting, and tensile characteristics of Sn–Ag–Cu alloy. Mater. Des. 87, 370 (2015)

    Article  Google Scholar 

  25. Nai, S.M.L., Wei, J., Gupta, M.: Lead free solder reinforced with Multiwalled carbon nanotubes. J. Electron. Mater. 35, 1518 (2006)

    Article  Google Scholar 

  26. Sharma, A., Sohn, H.R., Jung, J.P.: Effect of graphene nanoplatelets on wetting, microstructure, and tensile characteristics of Sn–3.0Ag–0.5Cu (SAC) alloy. Metall. Mater. Trans. A 47A, 494 (2016)

    Article  Google Scholar 

  27. Bhattacharya, S., Sharma, A., Das, S., Das, K.: Synthesis and properties of pulse electrodeposited lead-free tin-based Sn/ZrSiO4 nanocomposite coatings. Metall. Mater. Trans. A 47(3), 1292 (2016)

    Article  Google Scholar 

  28. Sharma, A., Xu, D.E., Chow, J., Mayer, M., Sohn, H.R., Jung, J.P.: Electromigration of composite Sn–Ag–Cu solder bumps. Electron. Mater. Lett. 11(6), 1072 (2015)

    Article  Google Scholar 

  29. Sharma, A.: Effect of synthesis routes on microstructure of nanocrystalline cerium oxide powder. Mater. Sci. Appl. 4, 504 (2013)

    Google Scholar 

  30. Fima, P., Gazda, A.: Thermal analysis of selected Sn–Ag–Cu alloys. J. Therm. Anal. Calorim. 112, 731 (2013)

    Article  Google Scholar 

  31. Sharma, A., Roh, M.H., Jung, D.H., Jung, J.P.: Effect of ZrO2 nanoparticles on the microstructure of Al–Si–Cu filler for low-temperature Al brazing applications. Metall. Mater. Trans. A 47(1), 510 (2016)

    Article  Google Scholar 

  32. Sharma, A., Lim, D.U., Jung, J.P.: Microstructure and brazeability of SiC nanoparticles reinforced Al–9Si–20Cu produced by induction melting. Mater. Sci. Technol. 32(8), 773 (2016)

    Google Scholar 

  33. Desmond, Y.R.C., Che, F.X., John, H.L.P., Kellin, N., Jane, Y.N.T., Patrick, T.H.L.: Drop impact reliability testing for lead-free and lead-based soldered IC packages. Microelectron. Reliab. 46, 1160 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07044481) (B.A.). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07044706) (A.S.). This research was also supported by the Ajou University research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungmin Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Yu, H., Cho, I.S. et al. ZrO2 Nanoparticle Embedded Low Silver Lead Free Solder Alloy for Modern Electronic Devices. Electron. Mater. Lett. 15, 27–35 (2019). https://doi.org/10.1007/s13391-018-0089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0089-z

Keywords

Navigation