Skip to main content
Log in

Facile Synthesis and Characterization of GO/ZnS Nanocomposite with Highly Efficient Photocatalytic Activity

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

ZnS nanowalls, microspheres and rice-shaped nanoparticles have been successfully grown on graphene oxide (GO) sheets by the hydrothermal method. The morphologies, structures, chemical compositions and optical properties of the as-synthesized GO/ZnS have been characterized by X-ray power diffraction, energy dispersive spectrometer, scanning electron microscope, Raman spectra, photoluminescence spectroscopy and ultraviolet–visible absorption spectroscopy. It was found that the concentration of CTAB and the reaction temperature were important in the formation of GO/ZnS microstructures. The photocatalytic activity of the as-synthesized GO/ZnS was investigated through the photocatalytic degradation of textile dyeing waste. Results showed that the catalytic activity of the GO/ZnS porous spheres to methyl orange and methylene blue is higher than those of other samples. The degradation rates of methyl orange and methylene blue by porous spheres in 50 min were 97.6 and 97.1%, respectively. This is mainly attributed to the large specific surface area of GO/ZnS porous spheres and high separation efficiency between photogenerated electron and hole pairs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  2. Mahdiani, M., Sobhani, A., Salavati-Niasari, M.: Enhancement of magnetic, electrochemical and photocatalytic properties of lead hexaferrites with coating graphene and CNT: Sol-gel auto-combustion synthesis by valine. Sep. Purif. Technol. 185, 140–148 (2017)

    Article  Google Scholar 

  3. Fu, X., Bei, F., Wang, X., Brien, S.O., Lombardi, J.R.: Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives. Nanoscale 2, 1461–1466 (2010)

    Article  Google Scholar 

  4. Song, H.S., Yang, C., Liu, D.B.: Dielectric properties of graphene/epoxy composites. J. Funct. Mater. 43, 1185–1188 (2012)

    Google Scholar 

  5. Zhou, W.K., Xue, S.L., Han, J.W., Xie, P.: Synthesis of grass-like ZnSe nanostructures on graphene oxide and their excellent field eminssion properties. Mater. Lett. 134, 256–258 (2014)

    Article  Google Scholar 

  6. Ho, C.H.: Enhanced photoelectric-conversion yield in niobium incorporated In2S3 with intermediate band. J. Mater. Chem. 218, 10518–10524 (2011)

    Article  Google Scholar 

  7. Fang, X.S., Zhai, T.Y., Gautam, U.K., Li, L., Wu, L.M., Bando, Y., Golberg, D.: ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175–287 (2011)

    Article  Google Scholar 

  8. Jia, W.N., Wu, X., Jia, B.X., Qu, F.Y., Fan, H.J.: Self-Assembled porous ZnS nanospheres with high photocatalytic performance. Sci. Adv. Mater. 5, 1329–1336 (2013)

    Article  Google Scholar 

  9. Jia, W., Jia, B., Wu, X., Qu, F.Y.: Self-assembly of shape-controlled ZnS nanostructures with novel yellow light photoluminescence and excellent hydrophobic properties. Cryst. Eng. Comm. 14, 7759–7763 (2012)

    Article  Google Scholar 

  10. Fang, X.S., Bando, Y., Liao, M.Y., Zhai, T.Y., Gautam, U.K., Li, L., Koide, Y., Golberg, D.: An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Func. Mater. 20, 500–508 (2010)

    Article  Google Scholar 

  11. Liang, Y., Xu, H.Y., Hark, S.K.: Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. J. Phys. Chem. C 114, 8343–8347 (2010)

    Article  Google Scholar 

  12. Pal, B., Pal, B.: Tuning the optical and photocatalytic properties of anisotropic ZnS nanostructures for the selective reduction of nitroaromatics. Chem. Eng. J. 263, 200–208 (2015)

    Article  Google Scholar 

  13. Kavanagh, Y., Alam, M.J., Cameron, D.C.: The characteristics of thin film electroluminescent displays produced using sol-gel produced tantalum pentoxide and Zinc Sulfide. Thin Solid Films 447–448, 85–89 (2004)

    Article  Google Scholar 

  14. Jia, B., Jia, W., Qu, F., Wu, X.: General strategy for self-assembly of mesoporous SnO2 nanospheres and their applications in water purification. RSC Adv. 3, 2140–12148 (2013)

    Google Scholar 

  15. Liu, Y., Jiao, Y., Zhang, Z.L., Qu, F.Y., Umar, A., Wu, X.: Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor and supercapacitor applications. ACS Appl. Mater. Interfaces. 6, 2174–2184 (2014)

    Article  Google Scholar 

  16. Jiao, Y., Liu, Y., Yin, B., Zhang, S., Qu, F., Wu, X.: Hybrid α-Fe2O3@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy 10, 90–98 (2014)

    Article  Google Scholar 

  17. Calandra, P., Longo, A., Liveri, V.T.: Synthesis of ultra-small ZnS nanoparticles by solid–solid reaction in the confined space of AOT reversed micelles. J. Phys. Chem. B 107, 25–30 (2003)

    Article  Google Scholar 

  18. Biswas, S., Kar, S.: Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology 19, 045710 (2008)

    Article  Google Scholar 

  19. Salavati-Niasari, M., Davar, F., Loghman-Estarki, M.R.: Controllable synthesis of thioglycolic acid capped ZnS(Pn)0.5 nanotubes via simple aqueous solution route at low temperatrures and conversion to wurtzite ZnS nanorods via thermal decompose of precursor. J. Alloys Compd. 494, 199–204 (2010)

    Article  Google Scholar 

  20. Salavati-Niasari, M., Davar, F., Seyghalkar, H., Esmaeili, E., Mir, N.: Novel inorganic precursor in the controlled synthesis of zinc blend ZnS nanoparticles via TGA-assisted hydrothermal method. Cryst. Eng. Comm. 13, 2948–2954 (2011)

    Article  Google Scholar 

  21. Salavati-Niasari, M., Davar, F., Mazaheri, M.: Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis (salicylidene) zinc (II)]. J. Alloys Compd. 470, 502–506 (2009)

    Article  Google Scholar 

  22. She, Y.Y., Yang, J., Qiu, K.Q.: Synthesis of ZnS nanoparticles by solid-liquid chemical reaction with ZnO and Na2S under ultrasonic. Trans. Nonferrous Metals Soc. China 20, 211–215 (2010)

    Article  Google Scholar 

  23. Fang, X.S., Ye, C.H., Zhang, L.D., Wang, Y.H., Wu, Y.C.: Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Func. Mater. 15, 63–68 (2005)

    Article  Google Scholar 

  24. Park, S., Jin, C., Kim, H., Hong, C., Lee, C.: Enhanced violet emission from ZnS nanowires annealed in an oxygen atmosphere. J. Lumin. 132, 231–235 (2012)

    Article  Google Scholar 

  25. Fang, X.S., Bando, Y.S., Ye, C.H., Shen, G.Z., Golberg, D.: Shape-and size-controlled growth of ZnS nanostructures. J. Phys. Chem. C 111, 8469–8474 (2007)

    Article  Google Scholar 

  26. Ma, Y.R., Qin, L.M., Ma, J., Cheng, H.: Facile synthesis of hollow ZnS nanospheres in block copolymer solutions. Langmuir 19, 4040–4042 (2003)

    Article  Google Scholar 

  27. Bi, C., Pan, L.Q., Guo, Z.G., Zhao, Y.L., Huang, M.F., Ju, X., Xiao, J.Q.: Facile fabrication of wurtzite ZnS hollow nanospheres using polystyrene spheres as templates. Mater. Lett. 64, 1681–1683 (2010)

    Article  Google Scholar 

  28. Chen, X.J., Xu, H.F., Xu, N.S., Zhao, F.H., Lin, W.J., Lin, G., Fu, Y.L., Huang, Z.L., Wang, H.Z., Wu, M.M.: Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network. Inorg. Chem. 42, 3100–3106 (2003)

    Article  Google Scholar 

  29. Fang, X.S., Wu, L.M., Hu, L.F.: ZnS nanostructure arrays: a developing material star. Adv. Mater. 23, 585–598 (2011)

    Article  Google Scholar 

  30. Fang, X.S., Bando, Y., Ye, C.H., Golberg, D.: Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission. Chem. Commun. 29, 3048–3050 (2007)

    Article  Google Scholar 

  31. Yin, L.W., Bando, Y., Zhan, J.H., Li, M.S., Golberg, D.: Self-assembled highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections. Adv. Mater. 17, 1972–1977 (2005)

    Article  Google Scholar 

  32. Shao, H.F., Qian, X.F., Huang, B.C.: Fabrication of single-crystal ZnO nanorods and ZnS nanotubes through a simple ultrasonic chemical solution method. Mater. Lett. 61, 3639–3643 (2007)

    Article  Google Scholar 

  33. Guo, C.F., Zhang, J., Wang, M., Tian, Y., Liu, Q.: A strategy to prepare wafer scale bismuth compound superstructures. Small 9, 2394–2398 (2013)

    Article  Google Scholar 

  34. Guo, C.F., Lan, Y.C., Sun, T.Y., Ren, Z.F.: Deformation-induced cold-welding for self-healing of super-durable flexible transparent electrodes. Nano Energy 8, 110–117 (2014)

    Article  Google Scholar 

  35. Zou, R.J., He, G.J., Xu, K.B., Liu, Q., Zhang, Z.Y., Hu, J.Q.: ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J. Mater. Chem. A 1, 8445–8452 (2013)

    Article  Google Scholar 

  36. Sobhani, A., Salavati-Niasari, M.: Cobalt selenide nanostructures: hydrothermal synthesis, considering the magnetic property and effect of the different synthesis conditions. J. Mol. Liq. 219, 1089–1094 (2016)

    Article  Google Scholar 

  37. Sobhani, A., Salavati-Niasari, M.: Morphological control of MnSe2/Se nanocomposites by amount of hydrazine through a hydrothermal process. Mater. Res. Bull. 48, 3204–3210 (2013)

    Article  Google Scholar 

  38. Gadzuk, J.W., Plummer, E.W.: Field emission energy distribution. Rev. Mod. Phys. 45, 487–548 (1973)

    Article  Google Scholar 

  39. Sobhani, A., Salavati-Niasari, M.: Single-source molecular precursor for synthesis of CdS nanoparticles and nanoflowers. High Temp. Mater. Processes 31, 157–162 (2012)

    Article  Google Scholar 

  40. Sobhani, A., Salavati-Niasari, M.: Hydrothermal synthesis of CoSe nanostructures without using surfactant. J. Mol. Liq. 220, 334–338 (2016)

    Article  Google Scholar 

  41. Sobhani, A., Salavati-Niasari, M.: Chromium selenide nanoparticles: hydrothermal synthesis in the presence of a new selenium source. J. Nanostruct 7, 141–146 (2017)

    Google Scholar 

  42. Song, P., Zhang, X.Y., Sun, M.X., Cui, X.L., Lin, Y.H.: Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide. RSC Adv. 2, 1168–1173 (2012)

    Article  Google Scholar 

  43. Geng, J., Liu, B., Xu, L., Hu, F.N., Zhu, J.J.: Facile route to Zn-based II-VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties. Langmuir 23, 10286–10293 (2007)

    Article  Google Scholar 

  44. Sobhani, A., Salavati-Niasari, M.: Optimized synthesis of ZnSe nanocrystals by hydrothermal method. J. Mater. Sci.: Mater. Electron. 27, 293–303 (2016)

    Google Scholar 

  45. Srivastava, M., Uddin, M.E., Singh, J., Kim, N.H., Lee, J.H.: Preparation and characterization of self-assembled layer by NiCo2O4-reduced graphene oxide nanocomposite with improved elecatalytic properties. J. Alloys. Compd. 590, 266–276 (2014)

    Article  Google Scholar 

  46. Sobhani, A., Salavati-Niasari, M.: CdSe nanoparticles: facile hydrothermal synthesis, characterization and optical properties. J. Mater. Sci.: Mater. Electron. 26, 6831–6836 (2015)

    Google Scholar 

  47. Panda, S.K., Datta, A., Chaudhuri, S.: Nearly monodispersed ZnS nanospheres: synthesis and optical properties. Chem. Phys. Lett. 440, 235–238 (2007)

    Article  Google Scholar 

  48. Yan, Q., Wu, A.P., Yan, H.J., Dong, Y.Y., Tian, C.G., Jiang, B.J., Fu, H.G.: Gelatin-assisted synthesis of ZnS hollow nanospheres: the microstructure tuning, formation mechanism and application for Pt-free photocatalytic hydrogen production. Cryst. Eng. Comm. 19, 461 (2017)

    Article  Google Scholar 

  49. Watanabe, T., Takizawa, T., Honda, K.: Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide. J. Phys. Chem. 81, 1845–1851 (1977)

    Article  Google Scholar 

  50. Qin, Y.L., Sun, Z., Zhao, W.W., Liu, Z.Y., Ni, D.R., Ma, Z.Y.: Effect of S2− donors on synthesizing and photocatalytic degrading properties of ZnS/RGO nanocomposite. Appl. Phys. A 123, 355 (2017)

    Article  Google Scholar 

  51. An, X.Q., Yu, J.C.: Graphene-based photocatalytic composites. RSC Adv. 1, 1426–1434 (2011)

    Article  Google Scholar 

  52. Zhang, H., Lv, X.J., Li, Y.M., Wang, Y., Li, J.H.: P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2010)

    Article  Google Scholar 

  53. Lee, J.S., You, K.H., Park, C.B.: Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24, 1084–1088 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 61072003).

Funding

This study was funded by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolin Xue.

Ethics declarations

Conflict of interest

We declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Xue, S., Xie, P. et al. Facile Synthesis and Characterization of GO/ZnS Nanocomposite with Highly Efficient Photocatalytic Activity. Electron. Mater. Lett. 14, 739–748 (2018). https://doi.org/10.1007/s13391-018-0082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0082-6

Keywords

Navigation