The Effects of Gd-Free Impurity Phase on the Aging Behavior for the Microwave Surface Resistance of Ag-coated GdBa2Cu3O7−δ at Cryogenic Temperatures

Abstract

High-TC GdBa2Cu3O7−δ (GdBCO) superconductor has been popular for making superconductive tapes that have much potential for various fields of large-scale applications. We investigated aging effects on the microwave surface resistance (RS) of Ag-coated GdBCO layer on Hastelloy substrate, so called GdBCO coated conductors (CCs), and Ag-coated GdBCO films on LaAlO3 (LAO) single-crystal substrates at cryogenic temperatures and compared them with each other. Unlike the RS of Ag-coated GdBCO films showing significant degradation in 4 weeks, no significant aging effects were found in our Ag-coated GdBCO CCs aged 85 weeks. The reactive co-evaporation deposition and reaction (RCE-DR) method was used for preparing the Ag-coated GdBCO CCs. Such durability of the Ag-coated GdBCO CCs in terms of the RS could be explained by existence of a protective impurity phase, i.e., Gd-free Ba–Cu–O phase as confirmed by transmission electron microscopy study combined with the energy-dispersive X-ray spectroscopy measurements. Although the scope of this study is limited to the Ag-coated GdBCO CCs prepared by using the RCE-DR method, our results suggest that a solution for preventing the aging effects on transport properties of other kinds of Ag-coated GdBCO CCs could be realized by means of an artificially-grown protective impurity layer.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Change history

  • 11 June 2018

    The original version of this article unfortunately contained a mistake. Figure 9 was incorrect. The corrected figure is given below.

References

  1. 1.

    Takahashi, K., Kobayashi, H., Yamada, Y., Ibi, A., Fukushima, H., Konishi, M., Miyata, S., Shiohara, Y., Kato, T., Hirayama, T.: Supercond. Sci. Technol. 19, 924 (2006)

    Article  Google Scholar 

  2. 2.

    Lee, S., Chikumoto, N., Yokoyama, T., Machi, T., Nakao, K., Tanabe, K.: IEEE Trans. Appl. Supercond. 19, 3192 (2009)

    Article  Google Scholar 

  3. 3.

    Fuger, R., Inoue, M., Higashikawa, K., Kiss, T., Namba, M., Awaji, S., Watanabe, K., Ibi, A., Yamada, Y., Izumi, T.: J. Phys: Conf. Ser. 234, 022009 (2010)

    Google Scholar 

  4. 4.

    S. Yoon, J. Kim, K. Cheon, H. Lee, S. Hahn, S.H. Moon, Supercond. Sci. Technol. 29, 04LT04 (2016)

  5. 5.

    Lee, J.-H., Lee, H., Lee, J.-W., Choi, S.-M., Yoo, S.-I., Moon, S.-H.: Supercond. Sci. Technol. 27, 044018 (2014)

    Article  Google Scholar 

  6. 6.

    Schlesier, K., Huhtinen, H., Granroth, S., Paturi, P.: J. Phys: Conf. Ser. 234, 012036 (2010)

    Google Scholar 

  7. 7.

    Paturi, P., Schlesier, K., Huhtinen, H., Trans, I.E.E.E.: Appl. Supercond. 21, 2737 (2011)

    Article  Google Scholar 

  8. 8.

    Song, S.H., Ko, K.P., Ko, R.K., Song, K.J., Moon, S.H., Yoo, S.I.: Phys. C 463–465, 497 (2007)

    Article  Google Scholar 

  9. 9.

    Lee, S.Y., Lee, J.H., Ryu, J.S., Lim, J., Moon, S.H., Lee, H.N., Kim, H.G., Oh, B.: Appl. Phys. Lett. 79, 3299 (2001)

    Article  Google Scholar 

  10. 10.

    Jung, H.S., Lee, J.H., Han, H.K., Lee, S.Y.: Electron. Mater. Lett. 12, 350 (2016)

    Article  Google Scholar 

  11. 11.

    Hein, M.: High-Temperature-Superconductor Thin Films at Microwave Frequencies, p. 43. Springer, Berlin (1999)

    Google Scholar 

  12. 12.

    Lee, J.H., Yang, W.I., Kim, M.J., Booth, J.C., Leong, K., Schima, S., Rudman, D., Lee, S.Y., Trans, I.E.E.E.: Appl. Supercond. 15, 3700 (2005)

    Article  Google Scholar 

  13. 13.

    International Electrotechnical Commission, International standard, IEC 61788-15 ed. 1, (2011)

  14. 14.

    Klein, N., Chaloupka, H., Müller, G., Orbach, S., Piel, H., Roas, B., Schultz, H., Klein, U., Peiniger, M.: J. Appl. Phys. 67, 6940 (1990)

    Article  Google Scholar 

  15. 15.

    Ormeno, R.J., Gough, C.E., Yang, G.: Phys. Rev. B 63, 104517 (2001)

    Article  Google Scholar 

  16. 16.

    Ye, J., Nakamura, K.: Phys. Rev. B 48, 7554 (1993)

    Article  Google Scholar 

  17. 17.

    Yang, W.I., Jung, H.S., Lee, J.-H., Lee, H., Moon, S.-H., Lee, J.-W., Yoo, S.-I., Lee, S.Y.: Supercond. Sci. Technol. 29, 105004 (2016)

    Article  Google Scholar 

  18. 18.

    Ohshima, S., Oikawa, S., Noguchi, T., Inadomaru, M., Kusunoki, M., Mukaida, M., Yamasaki, H., Nakagawa, Y.: Physica C 372–376, 671 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Konkuk University in 2014.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sang Young Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Yang, W.I., Jung, H.S. et al. The Effects of Gd-Free Impurity Phase on the Aging Behavior for the Microwave Surface Resistance of Ag-coated GdBa2Cu3O7−δ at Cryogenic Temperatures. Electron. Mater. Lett. 14, 646–654 (2018). https://doi.org/10.1007/s13391-018-0068-4

Download citation

Keywords

  • Aging effect
  • GdBa2Cu3O7−δ
  • Surface resistance
  • Coated conductor
  • Film