Advertisement

Electronic Materials Letters

, Volume 14, Issue 5, pp 646–654 | Cite as

The Effects of Gd-Free Impurity Phase on the Aging Behavior for the Microwave Surface Resistance of Ag-coated GdBa2Cu3O7−δ at Cryogenic Temperatures

  • Sungho Lee
  • Woo Il Yang
  • Ho Sang Jung
  • Won-Jae Oh
  • Jiyeong Jang
  • Jae-Hun Lee
  • Kihyeok Kang
  • Seung-Hyun Moon
  • Sang-Im Yoo
  • Sang Young Lee
Article
  • 66 Downloads

Abstract

High-TC GdBa2Cu3O7−δ (GdBCO) superconductor has been popular for making superconductive tapes that have much potential for various fields of large-scale applications. We investigated aging effects on the microwave surface resistance (RS) of Ag-coated GdBCO layer on Hastelloy substrate, so called GdBCO coated conductors (CCs), and Ag-coated GdBCO films on LaAlO3 (LAO) single-crystal substrates at cryogenic temperatures and compared them with each other. Unlike the RS of Ag-coated GdBCO films showing significant degradation in 4 weeks, no significant aging effects were found in our Ag-coated GdBCO CCs aged 85 weeks. The reactive co-evaporation deposition and reaction (RCE-DR) method was used for preparing the Ag-coated GdBCO CCs. Such durability of the Ag-coated GdBCO CCs in terms of the RS could be explained by existence of a protective impurity phase, i.e., Gd-free Ba–Cu–O phase as confirmed by transmission electron microscopy study combined with the energy-dispersive X-ray spectroscopy measurements. Although the scope of this study is limited to the Ag-coated GdBCO CCs prepared by using the RCE-DR method, our results suggest that a solution for preventing the aging effects on transport properties of other kinds of Ag-coated GdBCO CCs could be realized by means of an artificially-grown protective impurity layer.

Graphical Abstract

Keywords

Aging effect GdBa2Cu3O7−δ Surface resistance Coated conductor Film 

Notes

Acknowledgements

This work was supported by Konkuk University in 2014.

References

  1. 1.
    Takahashi, K., Kobayashi, H., Yamada, Y., Ibi, A., Fukushima, H., Konishi, M., Miyata, S., Shiohara, Y., Kato, T., Hirayama, T.: Supercond. Sci. Technol. 19, 924 (2006)CrossRefGoogle Scholar
  2. 2.
    Lee, S., Chikumoto, N., Yokoyama, T., Machi, T., Nakao, K., Tanabe, K.: IEEE Trans. Appl. Supercond. 19, 3192 (2009)CrossRefGoogle Scholar
  3. 3.
    Fuger, R., Inoue, M., Higashikawa, K., Kiss, T., Namba, M., Awaji, S., Watanabe, K., Ibi, A., Yamada, Y., Izumi, T.: J. Phys: Conf. Ser. 234, 022009 (2010)Google Scholar
  4. 4.
    S. Yoon, J. Kim, K. Cheon, H. Lee, S. Hahn, S.H. Moon, Supercond. Sci. Technol. 29, 04LT04 (2016)Google Scholar
  5. 5.
    Lee, J.-H., Lee, H., Lee, J.-W., Choi, S.-M., Yoo, S.-I., Moon, S.-H.: Supercond. Sci. Technol. 27, 044018 (2014)CrossRefGoogle Scholar
  6. 6.
    Schlesier, K., Huhtinen, H., Granroth, S., Paturi, P.: J. Phys: Conf. Ser. 234, 012036 (2010)Google Scholar
  7. 7.
    Paturi, P., Schlesier, K., Huhtinen, H., Trans, I.E.E.E.: Appl. Supercond. 21, 2737 (2011)CrossRefGoogle Scholar
  8. 8.
    Song, S.H., Ko, K.P., Ko, R.K., Song, K.J., Moon, S.H., Yoo, S.I.: Phys. C 463–465, 497 (2007)CrossRefGoogle Scholar
  9. 9.
    Lee, S.Y., Lee, J.H., Ryu, J.S., Lim, J., Moon, S.H., Lee, H.N., Kim, H.G., Oh, B.: Appl. Phys. Lett. 79, 3299 (2001)CrossRefGoogle Scholar
  10. 10.
    Jung, H.S., Lee, J.H., Han, H.K., Lee, S.Y.: Electron. Mater. Lett. 12, 350 (2016)CrossRefGoogle Scholar
  11. 11.
    Hein, M.: High-Temperature-Superconductor Thin Films at Microwave Frequencies, p. 43. Springer, Berlin (1999)Google Scholar
  12. 12.
    Lee, J.H., Yang, W.I., Kim, M.J., Booth, J.C., Leong, K., Schima, S., Rudman, D., Lee, S.Y., Trans, I.E.E.E.: Appl. Supercond. 15, 3700 (2005)CrossRefGoogle Scholar
  13. 13.
    International Electrotechnical Commission, International standard, IEC 61788-15 ed. 1, (2011)Google Scholar
  14. 14.
    Klein, N., Chaloupka, H., Müller, G., Orbach, S., Piel, H., Roas, B., Schultz, H., Klein, U., Peiniger, M.: J. Appl. Phys. 67, 6940 (1990)CrossRefGoogle Scholar
  15. 15.
    Ormeno, R.J., Gough, C.E., Yang, G.: Phys. Rev. B 63, 104517 (2001)CrossRefGoogle Scholar
  16. 16.
    Ye, J., Nakamura, K.: Phys. Rev. B 48, 7554 (1993)CrossRefGoogle Scholar
  17. 17.
    Yang, W.I., Jung, H.S., Lee, J.-H., Lee, H., Moon, S.-H., Lee, J.-W., Yoo, S.-I., Lee, S.Y.: Supercond. Sci. Technol. 29, 105004 (2016)CrossRefGoogle Scholar
  18. 18.
    Ohshima, S., Oikawa, S., Noguchi, T., Inadomaru, M., Kusunoki, M., Mukaida, M., Yamasaki, H., Nakagawa, Y.: Physica C 372–376, 671 (2002)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of PhysicsKonkuk UniversitySeoulKorea
  2. 2.Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoulKorea
  3. 3.SuNAM Co., Ltd.AnseongKorea

Personalised recommendations