Advertisement

Electronic Materials Letters

, Volume 14, Issue 5, pp 563–568 | Cite as

High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films

  • Byoung-Soo Yu
  • Tae-Jun Ha
Article

Abstract

The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3–BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.

Keywords

Boron-nitride Aluminum oxide Solution-process Dielectric characteristics Morphology 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant funded by the Korea government (MSIT) (NRF-2017R1A2B2003808).

References

  1. 1.
    Zirkl, M., Haase, A., Fian, A., Schön, H., Sommer, C., Jakopic, G., Leising, G., Stadlober, B., Graz, I., Gaar, N., Schwödiauer, R., Bauer-Gogonea, S., Bauer, S.: Adv. Mater. 19, 2241 (2007)CrossRefGoogle Scholar
  2. 2.
    Majewski, L.A., Grell, M., Ogier, S.D., Veres, J.: Org. Electron. 4, 27 (2003)CrossRefGoogle Scholar
  3. 3.
    Jeon, J.Y., Ha, T.-J.: Appl. Surf. Sci. 413, 118 (2017)CrossRefGoogle Scholar
  4. 4.
    Kamimura, T., Sasaki, K., Wong, M.H., Krishnamurthy, D., Kuramata, A., Masui, T., Yamakoshi, S., Higashiwaki, M.: Appl. Phys. Lett. 104, 192104 (2014)CrossRefGoogle Scholar
  5. 5.
    Feng, T., Xu, Y., Zhang, Z., Du, X., Sun, X., Xiong, L., Rodriguez, R., Holze, R.: Appl. Mater. Inter. 8, 6512 (2016)CrossRefGoogle Scholar
  6. 6.
    Wan, Z., Zhang, T.F., Lee, H.-B.-R., Yang, J.H., Choi, W.C., Han, B.C., Kim, K.H., Kwon, S.-H.: Appl. Mater. Inter. 7, 26716 (2015)CrossRefGoogle Scholar
  7. 7.
    Choi, M.S., Janotti, A., Van de Walle, Chris G.: Appl. Phys. 113, 044501 (2013)CrossRefGoogle Scholar
  8. 8.
    Pan, Y.X., Sun, Z.Q., Cong, H.P., Men, Y.L., Xin, S., Song, J., Yu, S.H.: Nano Res. 9, 1689 (2016)CrossRefGoogle Scholar
  9. 9.
    Ding, X., Huang, F., Li, S., Zhang, J., Jiang, X., Zhang, Z.: Electron. Mater. Lett. 13, 45 (2017)CrossRefGoogle Scholar
  10. 10.
    Lee, D.W., Kim, B.K.: Mater. Lett. 58, 378 (2004)CrossRefGoogle Scholar
  11. 11.
    Li, W., Dichiara, A., Zha, J., Su, Z., Bai, J.: Compos. Sci. Technol. 103, 36 (2014)CrossRefGoogle Scholar
  12. 12.
    McN, N., Alford, J., Breeze, S.J., Penn Poole, M.: IEE Proc. Sci. Meas. Tech. 147, 269 (2000)CrossRefGoogle Scholar
  13. 13.
    Kubo, T., Freedsman, J.J., Iwata, Y., Egawa, T.: Semicond. Sci. Tech. 29, 045004 (2014)CrossRefGoogle Scholar
  14. 14.
    Cho, A.J., Yang, S., Park, K., Namgung, S.D., Kim, H.J., Kwon, J.Y.: ECS Solid State Lett. 3, Q67 (2014)CrossRefGoogle Scholar
  15. 15.
    Hou, X., Yu, Z., Li, Y., Chou, K.-C.: Mater. Res. Bull. 49, 39 (2014)CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Zou, J., Campbell, S.J., Caer, G.L.: Appl. Phys. Lett. 84, 2430 (2004)CrossRefGoogle Scholar
  17. 17.
    Jo, I.S., Pettes, M.T., Kim, J.H., Watanabe, K., Taniguchi, T., Yao, Z., Shi, L.: Nano Lett. 13, 550 (2003)CrossRefGoogle Scholar
  18. 18.
    Zhu, J., Kang, J.H., Kang, J.M., Jariwala, D., Wood, J.D., Seo, J.W.T., Chen, K.S., Marks, T.J., Hersam, M.C.: Nano Lett. 15, 7029 (2015)CrossRefGoogle Scholar
  19. 19.
    Zou, X., Huang, C.W., Wang, L., Yin, L.J., Li, W., Wang, J., Wu, B., Liu, Y., Yao, Q., Jiang, C., Wu, W.W., He, L., Chen, S., Ho, J.C., Liao, L.: Adv. Mater. 28, 2062 (2016)CrossRefGoogle Scholar
  20. 20.
    Delplanque, A., Henry, E., Lautru, J., Leh, H., Buckle, M., Nogues, C.: Appl. Surf. Sci. 314, 280 (2014)CrossRefGoogle Scholar
  21. 21.
    Moriyam, Y., Ikeda, K., Takeuchi, S., Kamimuta, Y., Nakamura, Y., Izunome, K., Sakai, A., Tezuka, T.: Appl. Phys. Lett. 104, 086501 (2014)Google Scholar
  22. 22.
    Park, G.-H., Kim, K.-S., Fukidome, H., Suemitsu, T., Otsuji, T., Cho, W.-J., Suemitsu, M.: Jpn. J. Appl. Phys. 55, 091502 (2016)CrossRefGoogle Scholar
  23. 23.
    Boll, D., Schubert, K., Brauner, C., Lang, W.: IEEE Sens. J. 14, 2193 (2014)CrossRefGoogle Scholar
  24. 24.
    Lee, Y.S., Heo, J., Siah, S.C., Mailoa, J.P., Brandt, R.E., Kim, S.B., Gordon, R.G., Buonassisi, T.: Energy Environ. Sci. 6, 2112 (2013)CrossRefGoogle Scholar
  25. 25.
    Yue, Y., Dong, M., Duan, C., Ren, M., Li, Y., Dai, J.: Nanosci. Nanotech. Let. 9, 1298 (2017)Google Scholar
  26. 26.
    Luo, B., Wang, X., Wang, Y., Li, L.: J. Mater. Chem. A 2, 510 (2014)CrossRefGoogle Scholar
  27. 27.
    Fang, R.-C., Sun, Q.-Q., Zhou, P., Yang, W., Wang, P.-F., Zhang, D.W.: Nano. Res. Lett. 8, 92 (2013)CrossRefGoogle Scholar
  28. 28.
    Ha, T.-J., Kiriya, D., Chen, K., Javey, A., Appl, A.C.S.: Mater. Interfaces 6, 8441 (2014)CrossRefGoogle Scholar
  29. 29.
    Ha, T.-J., Dodabalapur, A.: Appl. Phys. Lett. 102, 123506 (2013)CrossRefGoogle Scholar
  30. 30.
    Qu, B., Younis, A., Chu, D.: Electron. Mater. Lett. 12, 715 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Electronic Materials EngineeringKwangwoon UniversitySeoulRepublic of Korea

Personalised recommendations