Electronic Materials Letters

, Volume 14, Issue 5, pp 636–645 | Cite as

Study of the H2O/Al2O3 Interface and the Acting Mechanism of Water in the Working Electrolyte

  • Ming Jia
  • Qiang Li
  • Lixiang Li
  • Liang Cao
  • Juan Yang
  • Xiangyang Zhou
  • Liang Ai


Using a working electrolyte containing mixed solvents of ethylene glycol and N,N-dimethylformamide, this paper presents a study of the reactions on the H2O/Al2O3 interface with sum frequency vibrational spectroscopy and the effects of different water content on the performance of the working electrolyte and an aluminum electrolytic capacitor and summarizes the rules of the variations in the performance parameters of the working electrolyte and aluminum electrolytic capacitor with respect to the water content. The results demonstrate that, when the water content is increased from 2.5 to 15%, the conductivity of the working electrolyte increased by 930 μS/cm, and the sparking voltage decreased by 27 V. Also, the increased water content causes lower oxidation efficiency and lower thermal stability. The leakage current of the aluminum electrolytic capacitor after high-temperature storage increases with an increase in the water content, and the attenuation rate of capacitor’s the low-temperature capacitance decreases with an increase in the water content.


Working electrolyte Aluminum electrolytic capacitor Water content Sum-frequency vibrational spectroscopy (SFVS) 



This work was supported by the National Natural Science Foundation of China (Grant No. 51774343); the Special Foundation of Industrial Upgrading Transformatio and Strengthen the Foundation of Ministry of Industry and Information Technology, China (Grant No. 0714-EMTC02-5271/6); and the Foundation of Strategic Emerging Industrial Scientific Project Research, China (Grant No. 2015GK1045).


  1. 1.
    Yu, C.Y., Li, J.D.: Development of working electrolyte of aluminum electrolytic capacitors for high temperature and high voltage. J. Shantou Univ. 21, 14–16 (2006)Google Scholar
  2. 2.
    Cousseau, R., Patin, N., Forgez, C., Monmasson, E., Idkhajine, L.: Improved electrical model of aluminum electrolytic capacitor with anomalous diffusion for health monitoring. Math. Comput. Simul. 131, 268–282 (2017)CrossRefGoogle Scholar
  3. 3.
    Conway, B.E.: Electrochemical Supercapacitors, p. 21. Plenum Press, New York (1999)CrossRefGoogle Scholar
  4. 4.
    Song, Y., Zhu, X., Wang, X., Wang, M.: Characteristics of ionic liquid-based electrolytes for chip type aluminum electrolytic capacitors. J. Power Sources 157, 610–615 (2006)CrossRefGoogle Scholar
  5. 5.
    Wang, P., Zakeeruddin, S.M., Moser, J.E., Humphry-Baker, R., Grätzel, M.: A solvent-free, SeCN/(SeCN)3-based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. J Am Chem Soc 126, 7164–7165 (2004)CrossRefGoogle Scholar
  6. 6.
    Pereira, N.D.M., Trigueiro, J.P.C., Monteiro, I.D.F., Montoro, L.A., Silva, G.G.: Graphene oxide–ionic liquid composite electrolytes for safe and high-performance supercapacitors. Electrochim. Acta 259, 783–792 (2018)CrossRefGoogle Scholar
  7. 7.
    Gorska, B., Pernak, J., Béguin, F.: Protic ionic liquids with N-chloroalkyl functionalized cations as electrolytes for carbon-based electrochemical capacitors. Electrochim. Acta 246, 971–980 (2017)CrossRefGoogle Scholar
  8. 8.
    Ning, K., Wang, D.Q., Cao, Y.M., Xie, Z.G., Heng-Sheng, X.U.: Research on wide temperature range and high-frequency low impedance features for aluminum electrolytic capacitor. Electron. Compon. Mater. 27, 61–64 (2008)Google Scholar
  9. 9.
    Zhang, X., Chen, Y., Xinwei, Y.U., Zhou, H., Zhao, G.: Effect of boronic polyester on the properties of working electrolyte for aluminum electrolytic capacitor. Electron. Compon. Mater. 29, 50–53 (2010)Google Scholar
  10. 10.
    Shultz, M.J., Baldelli, S., Schnitzer, C., Simonelli, D.: Aqueous solution/air interfaces probed with sum frequency generation spectroscopy. J. Phys. Chem. B 106, 5313–5324 (2002)CrossRefGoogle Scholar
  11. 11.
    Becraft, K.A., Richmond, G.L.: Surfactant adsorption at the salt/water interface: comparing the conformation and interfacial water structure for selected surfactants. J. Phys. Chem. B 109, 5108–5117 (2005)CrossRefGoogle Scholar
  12. 12.
    Backus, E.H.G., Garciaaraez, N., Bonn, M., Bakker, H.J.: On the role of Fresnel factors in sum-frequency generation spectroscopy of metal–water and metal–oxide–water interfaces. J. Phys. Chem. C 116, 23351–23361 (2012)CrossRefGoogle Scholar
  13. 13.
    Ambrus, J.H., Moynihan, C.T., Macedo, P.B.: Conductivity relaxation in a concentrated aqueous electrolyte solution. J. Phys. Chem. 76, 3287–3295 (1972)CrossRefGoogle Scholar
  14. 14.
    Dudzicz, Z.: Pomiary eksperymentalne napięcia przeskoku dla układów elektrod z małą szczeliną używanych do projektowania modeli laboratoryjnych odpylaczy elektrostatycznych i separatorów. Przeglad Elektrotechniczny 87, 293–296 (2011)Google Scholar
  15. 15.
    Zhou, X.S., Zhang, X.Y., Wu, D.F.: Effects of nano-SiO2 in electrolytes on surface properties of micro-arc oxidation ceramic coatings formed on new casting aluminum alloy. Adv. Mater. Res. 581–582, 368–372 (2012)CrossRefGoogle Scholar
  16. 16.
    Despić, A., Parkhutik, V.P.: Electrochemistry of Aluminum in Aqueous Solutions and Physics of Its Anodic Oxide, pp. 401–503. Springer, New York (1989)Google Scholar
  17. 17.
    Zhang, Y., Tan, H.: To prepare working electrolyte used for aluminum electrolytic capacitors with high operating voltage and high working temperature. Electron. Compon. Mater. 14, 43–44 (1995)Google Scholar
  18. 18.
    Prymak, J.D.: Improvements with polymer cathodes in aluminum and tantalum capacitors. In: Applied Power Electronics Conference and Exposition, 2001. Apec 2001. Sixteenth IEEE, 1212, pp. 1210–1218 (2002)Google Scholar
  19. 19.
    Yong-Jun, H.U., Zhou, X.Q., Long, L.P., Zhou, P.D., Chemistry, D.O., University, H.C.: Study on the heating technology of electrolyte for aluminum electrolytic capacitor. Chin. Battery Ind. 18, 14–17 (2013)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangsha CityChina
  2. 2.The Aihua GroupYiyang CityChina
  3. 3.All-Solid-State Energy Storage Materials and DevicesYiyang CityChina

Personalised recommendations