Mask Materials and Designs for Extreme Ultra Violet Lithography

Article
  • 59 Downloads

Abstract

Extreme ultra violet lithography (EUVL) is no longer a future technology but is going to be inserted into mass production of semiconductor devices of 7 nm technology node in 2018. EUVL is an extension of optical lithography using extremely short wavelength (13.5 nm). This short wavelength requires major modifications in the optical systems due to the very strong absorption of EUV light by materials. Refractive optics can no longer be used, and reflective optics is the only solution to transfer image from mask to wafer. This is why we need the multilayer (ML) mirror-based mask as well as an oblique incident angle of light. This paper discusses the principal theory on the EUV mask design and its component materials including ML reflector and EUV absorber. Mask shadowing effect (or mask 3D effect) is explained and its technical solutions like phase shift mask is reviewed. Even though not all the technical issues on EUV mask are handled in this review paper, you will be able to understand the principles determining the performance of EUV masks.

Keywords

Extreme ultraviolet lithography EUV mask Absorber materials Multilayer mirror Phase shift mask 

Notes

Acknowledgements

I would like to thank all the authors of the technical papers referenced in this review paper. The author is indebted to all the students and colleagues for their dedicated assistance. This research was supported by the Commercialization Promotion Agency for R&D Outcomes (COMPA), funded by the Ministry of Science and ICT (MSIT) (Grant No. 2017K000389).

References

  1. 1.
    Chen, A., Miyazaki, J.: EUV lithography insertion for high volume manufacturing: status and outlook. In: Proceedings of IEEE Electron Devices Technology and Manufacturing Conference, p. 77. IEEE Electron Devices Society, Toyama, Japan (2017)Google Scholar
  2. 2.
    Buitrago, E., Meeuwissen, M., Yildrim, O., Custers, R., Hoefnagels, R., Rispens, G., Vockenhuber, M., Mochi, I., Fallica, R., Tasdemir, Z., Ekinci, Y.: State-of-the-art EUV materials and processes for the 7nm node and beyond. Proc. SPIE 10143, 101430T (2017)CrossRefGoogle Scholar
  3. 3.
    Kim, S.-S., Chalykh, R., Kim, H., Lee, S., Park, C., Hwang, M., Park, J., Park, J., Kim, H., Jeon, J., Kim, I., Lee, D., Na, J., Kim, J., Lee, S., Kim, H., Nam, S.: Progress in EUV lithography toward manufacturing. Proc. SPIE 10143, 1014306 (2017)CrossRefGoogle Scholar
  4. 4.
    van Es, R., van de Kerkhof, M., Jasper, H., Levasier, L., Peeters, R.: EUV lithography industrialization progress. Proc. SPIE 10450, 1045003 (2017)Google Scholar
  5. 5.
    Fomenkov, I., Brandt, D., Ershov, A., Schafgans, A., Tao, Y., Vaschenko, G., Rokitski, S., Kats, M., Vargas, M., Purvis, M., Rafac, R., La Fontaine, B., De Dea, S., LaForge, A., Stewart, J., Chang, S., Graham, M., Riggs, D., Taylor, T., Abraham, M., Brown, D.: Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling. Adv. Opt. Technol. 6, 173 (2017)Google Scholar
  6. 6.
    Yabu, T., Kawasuji, Y., Hori, T., Okamoto, T., Tanaka, H., Miyao, K., Ishii, T., Watanabe, Y., Yanagida, T., Shiraishi, Y., Abe, T., Kodama, T., Nakarai, H., Yamazaki, T., Itou, N., Saito, T., Mizoguchi, H.: Key components development progress updates of the 250W high power LPP-EUV light source. Proc. SPIE 10450, 104501C (2017)Google Scholar
  7. 7.
    Yan, P.-Y.: Handbook of Photomask Manufacturing Technology, p. 234. CRC Press, Boca Raton (2005)Google Scholar
  8. 8.
    Hector, S.: Standards for EUV Masks. SEMI EUV Mask Standards Meeting. SEMATECH, San Francisco, California (2005)Google Scholar
  9. 9.
    Takeichi, Y., Nishiyama, I., Yamada, N.: High-precision (<1ppb/°C) optical heterodyne interferometric dilatometer for determining absolute CTE of EUVL materials. Proc. SPIE 6151, 61511Z (2006)CrossRefGoogle Scholar
  10. 10.
    Schödel, R.: Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer. Meas. Sci. Technol. 19(8), 084003 (2008)CrossRefGoogle Scholar
  11. 11.
    Hector, S.: Standards for EUV Masks. EUV Mask Workshop. SEMATECH, Miyazaki, Japan (2004)Google Scholar
  12. 12.
    Gullikson, E., Blaedel, K., Larson, C., Baker, S.L., Taylor, J.S.: EUV scattering from mask substrate roughness. 1st EUVL Symposium. SEMATECH, Dallas, Texas (2002)Google Scholar
  13. 13.
    Ballman, K., Lee, C., Dunn, T., Bean, A.: Error analysis of overlay compensation methodologies and proposed functional tolerances for EUV photomask flatness. Proc. SPIE 9984, 99840S (2016)CrossRefGoogle Scholar
  14. 14.
    Turley, C., Rankin, J., Cehn, X., Ballman, K., Lee, C.A., Dunn, T.: EUV mask flatness compensation strategies and requirements for reticle flatness, scanner optimization and E-beam writer. Proc. SPIE 10450, 104500A (2017)Google Scholar
  15. 15.
    Blaedel, K.L., Taylor, J.S., Hector, S.D., Yan, P., Ramamoorthy, A., Brooker, P.D.: Vendor capability for low thermal expansion mask substrates for EUV lithography. Proc. SPIE 4688, 767 (2002)CrossRefGoogle Scholar
  16. 16.
    Chen, X., Turley, C., Rankin, J., Brunner, T., Gabor, A.: Minimizing wafer overlay errors due to EUV mask non-flatness and thickness variations for N7 production. Proc. SPIE 10143, 101431F (2017)Google Scholar
  17. 17.
    Smith, B.W., Venkataraman, P., Kurinec, S.K., Mackay, R.S.: Materials for reflective multilayer coatings for EUV wavelengths. Proc. SPIE 3331, 544 (1998)CrossRefGoogle Scholar
  18. 18.
    Slaughter, J.M., Schulze, D.W., Hills, C.R., Mirone, A., Stalio, R., Watts, R.N., Tarrio, C., Lucatorto, T.B., Krumrey, M., Mueller, P., Falco, C.M.: Structure and performance of Si/Mo multilayer mirrors for the extreme ultraviolet. J. Appl. Phys. 76(4), 2144 (1994)CrossRefGoogle Scholar
  19. 19.
    Yan, P.-Y.: Handbook of Photomask Manufacturing Technology, p. 238. CRC Press, Boca Raton (2005)Google Scholar
  20. 20.
    Melvin, L.S., Kandel, Y., Isoyan, A., Gao, W.: Individual multilayer reflectance and near field image formation in an EUV reticle. Proc. SPIE 10450, 104500F (2017)Google Scholar
  21. 21.
    Onoue, T., Shoki, T., Horikawa, J.: Progress of EUV blanks development. EUVL Symposium, S2.1. EIDEC, Hiroshima, Japan (2016)Google Scholar
  22. 22.
    Tomofuji, T., Kandaka, N., Komiya, T., Shiraishi, M., Murakami, K.: Mo/Si multilayer(ML) mirror depositied with ion beam sputtering using Kr gas. 3rd International EUVL Symposium, p. 937. SEMATECH, Miyazaki, Japan (2004)Google Scholar
  23. 23.
    Lee, S.Y., Hur, S.M., Kim, H.J., Yoon, C.S., Lee, Y.T., Kang, I.Y., Chung, Y.-C., Yi, M., Bok, C.K., Kim, O., Ahn, J.: Analysis of multilayer structure for reflection of extreme-ultraviolet wavelength. Jpn. J. Appl. Phys. 41, 4086 (2002)CrossRefGoogle Scholar
  24. 24.
    Yulin, S., Benoit, N., Feigl, T., Kaiser, N.: Interface-engineered multilayer mirrors. Proc. SPIE 5963, 59630U (2005)CrossRefGoogle Scholar
  25. 25.
    Chkhalo, N.I., Gusev, S.A., Nechay, A.N., Pariev, D.E., Polkovnikov, V.N., Salashchenko, N.N., Schafers, F., Sertsu, M.G., Sokolov, A., Svechnikov, M.V., Tatarsky, D.A.: High-reflection Mo/Be/Si multilayers for EUV lithography. Opt. Lett. 42, 5070 (2017)CrossRefGoogle Scholar
  26. 26.
    Bajt, S., Alameda, J., Barbee, T., Clift, W.M., Folta, J.A., Kaufmann, B., Spiller, E.: Improved reflectance and stability of Mo/Si multilayers. Proc. SPIE 4506, 65 (2001)CrossRefGoogle Scholar
  27. 27.
    Braun, S., Mai, H., Moss, M., Scholz, R., Leson, A.: Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors. Jpn. J. Appl. Phys. 41, 4074 (2002)CrossRefGoogle Scholar
  28. 28.
    Yan, P.Y., Zhang, G., Chegwidden, S., Spiller, E., Mirkarimi, P.: EUVL mask with Ru ML capping. Proc. SPIE 5256, 1281 (2003)CrossRefGoogle Scholar
  29. 29.
    Nishiyama, I.: Model of Ru surface oxidation for the lifetime scaling of EUVL projection optics mirror. Proc. SPIE 6151, 61510G (2006)CrossRefGoogle Scholar
  30. 30.
    Kim, T.G., Lee, S.Y., Kim, C.Y., Park, I.S., Kang, I.Y., Lee, N.E., Chung, Y.C., Ahn, J.: Characterization of Ru layer for capping/buffer application in EUVL mask. Microelectron. Eng. 83, 688 (2006)CrossRefGoogle Scholar
  31. 31.
    Dattilo, D., Dietze, U., Hsu, J.-W.: Ruthenium capping layer preservation for 100X clean through pH driven effects. Proc. SPIE 9635, 96351B (2015)Google Scholar
  32. 32.
    Takase, H., Terashima, S., Gomei, Y., Tanabea, M., Watanabe, Y., Aoki, T., Murakami, K., Matsunari, S., Niibe, M., Kakutani, Y.: Study of ruthenium-capped multilayer mirror for EUV irradiation durability. Proc. SPIE 6151, 615135 (2006)CrossRefGoogle Scholar
  33. 33.
    Lee, B.T., Hoshino, E., Takahashi, M., Yoneda, T., Yamanashi, H., Hoko, H., Chiba, A., Ito, M., Ogawa, T., Okazaki, S.: Characteristics of the Ru buffer layer for EUVL mask patterning. Proc. SPIE 4343, 746 (2001)CrossRefGoogle Scholar
  34. 34.
    Kearney, P.A., Moore, C.E., Tan, S.I., Vernon, S.P., Levesque, R.A.: Mask blanks for extreme ultraviolet lithography: ion beam sputter deposition of low defect density Mo/Si multilayers. J. Vac. Sci. Technol. B 15(6), 2452 (1997)CrossRefGoogle Scholar
  35. 35.
    Folta, J.A., Davidson, J.C., Larson, C.C., Walton, C.C., Kearney, P.A.: Advances in low-defect multilayers for EUVL mask blanks. Proc. SPIE 4688, 173 (2002)CrossRefGoogle Scholar
  36. 36.
    Mirkarimi, P.B., Spiller, E.A., Stearns, D.G., Sperry, V., Baker, S.L.: An ion-assisted Mo–Si deposition process for planarizing reticle substrates for extreme ultraviolet lithography. IEEE J. Quantum Electron. 37(12), 1514 (2001)CrossRefGoogle Scholar
  37. 37.
    Spiller, E.A., Baker, S.L., Mirkarimi, P.B., Sperry, V., Gullikson, E.M., Stearns, D.G.: High-performance Mo–Si multilayer coatings for extreme-ultraviolet lithography by ion-beam deposition. Appl. Opt. 42(12), 4049 (2003)CrossRefGoogle Scholar
  38. 38.
    Mirkarimi, P.B., Spiller, E.A., Baker, S.L., Sperry, V.L., Stearns, D.G., Gullikson, E.M.: Developing a viable multilayer coating process for extreme ultraviolet lithography reticles. J. Microlithogr. Microfabr. Microsyst. 3(1), 139–145 (2004)Google Scholar
  39. 39.
    Randive, R., Ma, A., Reiss, I., Mirkarimi, P., Spiller, E., Beier, B., Uno, T., Kearney, P., Jeon, C.-U.: Defect mitigation and reduction in EUVL mask blanks. Proc. SPIE 6517, 651726 (2007)CrossRefGoogle Scholar
  40. 40.
    Kearney, P., Ma, A., Jeon, C.U., Uno, T., Beier, B.: Defect mitigation and reduction in EUVL mask blanks. 5th EUVL Symposium, p. 734. SEMATECH, Barcelona, Spain (2006)Google Scholar
  41. 41.
    Rastegar, A., Eichenlaub, S., Kapila, V., Kadaksham, A.J., Marmillion, P.: New requirements for the cleaning of EUV mask blanks. Proc. SPIE 6517, 65171D (2007)CrossRefGoogle Scholar
  42. 42.
    Rastegar, A., Eichenlaub, S., Popp, H., Goncher, K., Marmillion, P.: Removing sub-50nm particles during blank substrate cleaning. Solid State Technol. 49, 47 (2006)Google Scholar
  43. 43.
    Gullikson, E., Cerjan, C., Stearns, D., Mirkarimi, P., Sweeney, D.: Practical approach for modeling extreme ultraviolet lithography mask defects. J. Vac. Sci. Technol. B 20(1), 81 (2002)CrossRefGoogle Scholar
  44. 44.
    Mirkarimi, P.B., Spiller, E., Baker, S.L., Stearns, D.G., Robinson, J.C., Olynick, D.L., Salmassi, F., Liddle, J.A., Liang, T., Stivers, A.R.: A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces. J. Nanosci. Nanotechnol. 6, 28 (2006)Google Scholar
  45. 45.
    Barty, A., Mirkarimi, P.B., Stearns, D.G., Sweeney, D.W., Chapman, H.N., Clift, W.M., Hector, S.D., Yi, M.: EUVL mask blank repair. Proc. SPIE 4688, 385 (2002)CrossRefGoogle Scholar
  46. 46.
    Yan, P.-Y., Zhang, G., Kofron, P., Powers, J., Tran, M., Liang, T., Stivers, A., Lo, F.C.: EUV mask absorber characterization and selection. Proc. SPIE 4066, 116 (2000)CrossRefGoogle Scholar
  47. 47.
    Niibe, M., Watanabe, T., Nii, H., Tanaka, T., Kinoshita, H.: Contrast measurement of reflection masks fabricated from Cr and Ta absorbers for extreme ultraviolet lithography. Jpn. J. Appl. Phys. 39, 6815 (2000)CrossRefGoogle Scholar
  48. 48.
    Philipsen, V., Luong, K.V., Hendrickx, E., Erdmann, A., Xu, D., Evanschitzky, P., Kruijs, R.W., Edrisi, A., Scholze, F., Laubis, C., Irmscher, M., Naasz, S., Reuter, C.: Mitigating EUV mask 3D effects by alternative metal absorbers. EUVL Symposium, S4.2. EIDEC, Hiroshima, Japan (2016)Google Scholar
  49. 49.
    Philipsen, V., Luong, K.V., Souriau, L., Sanchez, E.A., Adelmann, C., Laubis, C., Scholtze, F., Kruemberg, J., Reuter, C., Hendrickx, E.: Single element and metal alloy novel EUV mask absorbers for improved imaging. Proc. SPIE 10450, 104500G (2017)Google Scholar
  50. 50.
    Mangat, P., Hector, S., Rose, S., Cardinale, G., Tejnil, E., Stivers, A.: EUV mask fabrication with Cr absorber. Proc. SPIE 3997, 76 (2000)CrossRefGoogle Scholar
  51. 51.
    Hoshino, E., Ogawa, T., Hirano, N., Hoko, H., Takahashi, M., Yamanashi, H., Chiba, A., Ito, M., Okazaki, S.: Dry etching of Ta absorber for EUVL masks. Proc. SPIE 4186, 749 (2000)CrossRefGoogle Scholar
  52. 52.
    Yan, P.-Y., Zhang, G., Ma, A., Liang, T.: TaN EUVL mask fabrication and characterization. Proc. SPIE 4343, 409 (2001)CrossRefGoogle Scholar
  53. 53.
    Green, M., Choi, Y., Ham, Y., Kamberian, H., Progler, C., Tseng, S.-E., Chiou, T.-B., Miyazaki, J., Lammers, A., Chen, A.: EUV mask manufacturing readiness in the merchant mask industry. Proc. SPIE 10450, 1045005 (2017)Google Scholar
  54. 54.
    Yan, P.-Y.: The impact of EUVL mask buffer and absorber material properties on mask quality and performance. Proc. SPIE 4688, 150 (2002)CrossRefGoogle Scholar
  55. 55.
    Wood, E.O., Raghunathan, S., Mangat, P., Philipsen, V., Luong, V., Kearney, P., Verduijn, E., Ku-mar, A., Patil, S., Laubis, C., Soltwisch, V., Scholze, F.: Alternative materials for high numerical aperture extreme ultraviolet lithography mask stacks. Proc. SPIE 9422, 94220I (2015)Google Scholar
  56. 56.
    Lee, J.U., Hong, S., Ahn, J.: Very thin extreme ultraviolet mask absorber material for extremely fine pitch patterning. Appl. Phys. Express 6, 076502 (2013)CrossRefGoogle Scholar
  57. 57.
    Philipsen, V., Luong, K.V., Souriau, L., Hendrickx, E., Erdmann, A., Xu, D., Evanschitzky, P., van de Kruijs, R.W.E., Edrisi, A., Scholze, F., Laubis, C., Irmscher, M., Naasz, S., Reuter, C.: Reducing EUV mask 3D effects by alternative metal absorbers. Proc. SPIE 10143, 1014310 (2017)CrossRefGoogle Scholar
  58. 58.
    Burkhardt, M.: Investigation of alternate mask absorbers in EUV lithography. Proc. SPIE 10143, 1014312 (2017)CrossRefGoogle Scholar
  59. 59.
    Rastegar, A., House, M., Tian, R., Laursen, T., Antohe, A., Kearney, P.: Study of alternative capping and absorber layers for extreme ultraviolet (EUV) masks for sub-16 nm half-pitch nodes. Proc. SPIE 9048, 90480L (2014)CrossRefGoogle Scholar
  60. 60.
    Civay, D., Hosler, E., Chauhan, V., Neogi, T.G., Smith, L., Pritchard, D.: EUV telecentricity and shadowing errors impact on process margins. Proc. SPIE 9422, 94220Z (2015)CrossRefGoogle Scholar
  61. 61.
    Erdmann, A., Evanschitzky, P.: Imaging characteristics of binary and phase shift masks for EUV projection lithography. Proc. SPIE 8550, 85503K (2012)CrossRefGoogle Scholar
  62. 62.
    Krautschik, C.G., Ito, M., Nishiyama, I., Otaki, K.: The impact of the EUV mask phase response on the asymmetry of Bossung curves as predicted by rigorous EUV mask simulations. Proc. SPIE 4343, 392 (2001)CrossRefGoogle Scholar
  63. 63.
    Lam, M., Clifford, C., Raghunathan, A., Fenger, G., Adam, K.: Enabling full field physics based OPC via dynamic model generation. Proc. SPIE 10143, 1014316 (2017)CrossRefGoogle Scholar
  64. 64.
    Mangat, P.J.S., Hector, S.D., Thompson, M.A., Dauksher, W.J., Cobb, J., Cummings, K.D., Mancini, D.P., Resnick, D.J., Cardinale, G., Henderson, C., Kearney, P., Wedowski, M.: Extreme ultraviolet lithography mask patterning and printability studies with a Ta-based absorber. J. Vac. Sci. Technol. B 17(6), 3029 (1999)CrossRefGoogle Scholar
  65. 65.
    Wasson, J.R., Lu, B., Mangat, P.J.S., Nordquist, K., Resnick, D.J.: Writing, repairing, and inspecting of extreme ultraviolet lithography reticles considering the impact of the materials. J. Vac. Sci. Technol. B 19(6), 2635 (2001)CrossRefGoogle Scholar
  66. 66.
    Park, W., Kwon, O., Lee, J., Whang, K.W.: Dry etching characteristics of TaN absorber for extreme ultraviolet mask with Ru buffer layer. J. Vac. Sci. Technol. A 30(4), 041301 (2012)CrossRefGoogle Scholar
  67. 67.
    Liang, T., Stivers, A., Livengood, R., Yan, P.-Y., Zhang, G., Lo, F.-C.: Progress in extreme ultraviolet mask repair using a focused ion beam. J. Vac. Sci. Technol. B 18(6), 3216 (2000)CrossRefGoogle Scholar
  68. 68.
    Jonckheere, R., Bret, T., Van den Heuvel, D., Magana, J., Gao, W., Waiblinger, M.: Repair of natural EUV reticle defects. Proc. SPIE 8166, 81661G (2011)CrossRefGoogle Scholar
  69. 69.
    Waiblinger, M., Kornilov, K., Hofmann, T., Edinger, K.: E-beam induced EUV photomask repair – a perfect match. Proc. SPIE 7545, 75450P (2010)CrossRefGoogle Scholar
  70. 70.
    Lee, S.-Y., Kim, G.-B., Sim, H.-S., Lee, S.-H., Kim, H.-S., Lee, J.-H., Seo, H.-S., Han, H.-S., Kim, S.-S., Moon, S.-Y., Woo, S.-G., Bozak, R., Dinsdale, A., Robinson, T., Lee, D., Cho, H.K.: Analysis of process margin in EUV mask repair with nano-machining. Proc. SPIE 7122, 71222I (2008)CrossRefGoogle Scholar
  71. 71.
    Waiblinger, M., Bret, T., Jonckheere, R., Van den Heuvel, D.: E-beam based mask repair as door opener for defect free EUV masks. Proc. SPIE 8522, 85221M (2012)CrossRefGoogle Scholar
  72. 72.
    Liang, T., Stivers, A.: Damage-free mask repair using electron beam induced chemical reactions. Proc. SPIE 4688, 375 (2002)CrossRefGoogle Scholar
  73. 73.
    Liang, T., Stivers, A.R., Penn, M., Bald, D., Sethi, C., Boegli, V., Budach, M., Edinger, K., Spies, P.: Demonstration of damage-free mask repair using electron beam-induced processes. Proc. SPIE 5466, 291 (2004)CrossRefGoogle Scholar
  74. 74.
    Liang, T., Frendberg, E., Bald, D.J., Penn, M., Stivers, A.R.: E-Beam mask repair: fundamental capability and applications. Proc. SPIE 5567, 456 (2004)CrossRefGoogle Scholar
  75. 75.
    Liang, T., Frendberg, E., Lieberman, B., Stivers, A.: Advanced photolithographic mask repair using electron beams. J. Vac. Sci. Technol. B 23(6), 3101 (2005)CrossRefGoogle Scholar
  76. 76.
    Robinson, T., White, R., Bozak, R., Roessler, K., Arruza, B., Hogle, D., Archuletta, M., Lee, D.: New tools to enable photomask repair to the 32 nm node. Proc. SPIE 7488, 74880F (2009)CrossRefGoogle Scholar
  77. 77.
    Bret, T., Jonckheere, R., Van den Heuvel, D., Baur, C., Waiblinger, M., Baralia, G.: Closing the gap for EUV mask repair. Proc. SPIE 8322, 83220C (2012)CrossRefGoogle Scholar
  78. 78.
    Aramaki, F., Ogawa, T., Matsuda, O., Kozakai, T., Sugiyama, Y., Oba, H., Yasaka, A., Amano, T., Shigemura, H., Suga, O.: Development of new FIB technology for EUVL mask repair. Proc. SPIE 7969, 79691C (2011)CrossRefGoogle Scholar
  79. 79.
    Yan, P.-Y.: EUVL alternating phase shift mask imaging evaluation. Proc. SPIE 4889, 1099 (2002)CrossRefGoogle Scholar
  80. 80.
    Takai, K., Motokawa, T., Murano, K., Kamo, T., Hayashi, N.: Patterning of EUVL binary etched multilayer mask. Proc. SPIE 8880, 88802M (2013)CrossRefGoogle Scholar
  81. 81.
    Kim, J.S., Hong, S., Lee, J.U., Lee, S.M., Ahn, J.: Attenuated phase-shift mask for mitigation of photon shot noise effect in contact hole pattern for extreme ultraviolet lithography. Appl. Phys. Express 7, 096502 (2014)CrossRefGoogle Scholar
  82. 82.
    Erdmann, A., Xu, D., Evanschitzky, P., Luong, V., Philipsen, V., Hendrickx, E.: Characterization and mitigation of 3D mask effects in EUV lithography. EUVL Symposium, S2.1. EIDEC, Hiroshima, Japan (2016)Google Scholar
  83. 83.
    Sherwin, S., Pistor, T.V., Neureuther, A., Naulleau, P.: Rigorous 3D electromagnetic simulation of ultrahigh efficiency EUV contact-hole printing with chromeless phase shift mask. Proc. SPIE 10143, 1014317 (2017)CrossRefGoogle Scholar
  84. 84.
    Deng, Y., Fontaine, B.L., Pawloski, A.R., Neureuther, A.R.: Simulation of fine structures and defects in EUV etched multilayer masks. Proc. SPIE 5374, 760 (2004)CrossRefGoogle Scholar
  85. 85.
    Takai, K., Murano, K., Kamo, T., Morikawa, Y., Hayashi, N.: Capability of etched multilayer EUV mask fabrication. Proc. SPIE 9235, 923515 (2014)CrossRefGoogle Scholar
  86. 86.
    Deng, Y., Fontaine, B.L., Levinson, H.J., Neureuther, A.R.: Rigorous EM simulation of the influence of the structure of mask patterns on EUVL imaging. Proc. SPIE 5037, 302 (2003)CrossRefGoogle Scholar
  87. 87.
    Kamo, T., Takai, K., Iida, N., Morikawa, Y., Hayashi, N., Watanabe, H.: Evaluation of etched multilayer mask for 0.33NA EUVL extension. EUVL Symposium, S4.4. EIDEC, Hiroshima, Japan (2016)Google Scholar
  88. 88.
    Yan, P.-Y.: Handbook of Photomask Manufacturing Technology, p. 265. CRC Press, Boca Raton (2005)Google Scholar
  89. 89.
    Lee, S., Lee, I., Doh, J., Lee, J., Hong, S., Ahn, J.: Improved imaging properties of thin attenuated phase shift masks for extreme ultraviolet lithography. J. Vac. Sci. Technol. B 31, 021606 (2013)CrossRefGoogle Scholar
  90. 90.
    Yan, P.-Y., Leeson, M., Lee, S., Zhang, G., Gullikson, E., Salmassi, F.: Extreme ultraviolet–embedded phase-shift mask. J. Micro/Nanolithogr. MEMS MOEMS 10, 033011 (2011)CrossRefGoogle Scholar
  91. 91.
    Lee, J.U., Jeong, S.J., Hong, S., Lee, S.M., Ahn, J.: Imaging performance of attenuated phase-shift mask using coherent scattering microscope. Proc. SPIE 9048, 90481X (2014)Google Scholar
  92. 92.
    Woo, D.G., Lee, J.U., Hong, S., Kim, J.S., Ahn, J.: Coherent scattering microscopy as an effective inspection tool for analyzing performance of phase shift mask. Opt. Express 24, 12055 (2016)CrossRefGoogle Scholar
  93. 93.
    van Ingen Schenau, K., Bottiglieri, G., van Schoot, J., Neumann, J.T., Roesch, M.: Imaging performance of the EUV high NA anamorphic system. Proc. SPIE 9661, 96610S (2015)CrossRefGoogle Scholar
  94. 94.
    van Schoot, J., Troost, K., Bornebroek, F., van Ballegoij, R., Lok, S., Krabbendam, P., Stoeldraijer, J., Loopstra, E., Benschop, J., Finders, J., Meiling, H., van Setten, E., Kneer, B., Kuerz, P., Kaiser, W., Heil, T., Migura, S., Neumann, J.T.: High-NA EUV lithography enabling Moore’s law in the next decade. Proc. SPIE 10450, 104500U (2017)Google Scholar
  95. 95.
    Levinson, H.J., Mangat, P., Wallow, T., Sun, L., Ackmann, P., Meyers, S.: Considerations for high-numerical aperture EUV lithography. Proc. SPIE 8679, 867916 (2013)CrossRefGoogle Scholar
  96. 96.
    Kneer, B., Migura, S., Kaiser, W., Neumann, J.T., van Schoot, J.: EUV lithography optics for sub 9 nm resolution. Proc. SPIE 9422, 94221G (2015)CrossRefGoogle Scholar
  97. 97.
    Ruoff, J.: Impact of mask topography and multilayer stack on high NA imaging of EUV masks. Proc. SPIE 7823, 78231N (2010)CrossRefGoogle Scholar
  98. 98.
    Pirati, A., van Schoot, J., Troost, K., van Ballegoij, R., Krabbendam, P., Stoeldraijer, J., Loopstra, E., Benschop, J., Finders, J., Meiling, H., van Setten, E., Mika, N., Driedonkx, J., Stamm, U.: The future of EUV lithography: enabling Moore’s law in the next decade. Proc. SPIE 10143, 101430G (2017)CrossRefGoogle Scholar
  99. 99.
    Philipsen, V., Hendrickx, E., Verduijn, E., Raghunathan, S., Wood, O., Soltwisch, V., Scholze, F., Davydova, N., Mangat, P.: Imaging impact of multilayer tuning in EUV masks, experimental validation. Proc. SPIE 9235, 92350J (2014)CrossRefGoogle Scholar
  100. 100.
    Hosler, E.R., Thiruvengadam, S., Cantone, J.R., Civay, D.E., Schroeder, U.P.: EUV and optical lithographic pattern shift at the 5nm node. Proc. SPIE 9776, 977616 (2015)Google Scholar
  101. 101.
    Wood, O., Wong, K., Parks, V., Kearney, P., Ilse, J.M., Luong, V., Philipsen, V., Faheem, M., Liang, Y., Kumar, A., Chen, E., Bennett, C., Fu, B., Gribelyuk, M., Zhao, W., Mangat, P., der Heide, P.V.: Improved Ru/Si multilayer reflective coatings for advanced extreme ultraviolet lithography photomasks. Proc. SPIE 9776, 977619 (2016)CrossRefGoogle Scholar
  102. 102.
    Jang, Y.J., Kim, J.S., Hong, S., Ahn, J.: Phase shift mask to compensate for mask 3D effect in high-numerical-aperture extreme ultraviolet lithography. Nanosci. Nanotechnol. Lett. 8, 729 (2016)CrossRefGoogle Scholar
  103. 103.
    Liang, T., Magana, J., Chakravorty, K., Panning, E., Zhang, G.: EUV mask infrastructure readiness and gaps for TD and HVM. Proc. SPIE 9635, 963509 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Nanoscale Semiconductor EngineeringHanyang UniversitySeoulSouth Korea
  2. 2.Department of Materials Science and EngineeringHanyang UniversitySeoulSouth Korea
  3. 3.Institute of Nano Science and TechnologyHanyang UniversitySeoulSouth Korea

Personalised recommendations