Skip to main content

Energy Storage of Polyarylene Ether Nitriles at High Temperature


Polyarylene ether nitrile (PEN) was synthesized and used as film capacitors for energy storage at high temperature. Scanning electron microscopy observation indicated that the films of PEN have pinholes at nanoscales which restricted the energy storage properties of the material. The pinhole shadowing effect through which the energy storage properties of PEN were effectively improved to be 2.3 J/cm3 was observed by using the overlapped film of PEN. The high glass transition temperature (Tg) of PEN was as high as 216 °C and PEN film showed stable dielectric constant, breakdown strength and energy storage density before the Tg. The PEN films will be a potential candidate as high performance electronic storage materials used at high temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Dang, Z., Yuan, J., Zha, J., et al.: Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater Sci. 57, 660 (2012)

    Article  Google Scholar 

  2. 2.

    Watson, J., Castro, G.: High-temperature electronics pose design and reliability challenges. Analog Dialog 46, 1 (2002)

    Google Scholar 

  3. 3.

    Chu, B.J., Zhou, X., Ren, K.L., et al.: A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334 (2006)

    Article  Google Scholar 

  4. 4.

    Rabuffi, M., Picci, G., Trans, I.E.E.E.: Status quo and future prospects for metallized polypropylene energy storage capacitors. Plasma Sci. 30, 1939 (2002)

    Article  Google Scholar 

  5. 5.

    Rahman, M.A., Chung, G.S.: Synthesis of PVDF-graphene nanocomposites and their properties. J. Alloys Compd. 581, 724 (2013)

    Article  Google Scholar 

  6. 6.

    Wei, R., Wang, J., Zhang, H., et al.: Crosslinked polyarylene ether nitrile interpenetrating with zinc ion bridged graphene sheet and carbon nanotube network. Polymers 9, 342 (2017)

    Article  Google Scholar 

  7. 7.

    You, Y., Han, W., Tu, L., et al.: Double-layer core/shell-structured nanoparticles in polyarylene ether nitrile-based nanocomposites as flexible dielectric materials. RSC Adv. 7, 29306 (2017)

    Article  Google Scholar 

  8. 8.

    Yang, W., Yang, X., Pu, Z., et al.: The properties (rheological, dielectric, and mechanical) and microtopography of spherical fullerene-filled poly (arylene ether nitrile) nanocomposites. J. Appl. Polym. Sci. 131, 40100 (2014)

    Google Scholar 

  9. 9.

    Wei, R., Li, K., Ma, J., et al.: Improving dielectric properties of polyarylene ether nitrile with conducting polyaniline. J. Mater. Sci. Mater. Electron. 9, 9565 (2016)

    Article  Google Scholar 

  10. 10.

    Feng, M., Yang, J., Zhong, J., et al.: Synthesis of high glass transition temperature fluorescent polyarylene ether nitrile copolymers. Mater. Lett. 65, 1703 (2011)

    Article  Google Scholar 

  11. 11.

    Huang, X., Feng, M., Liu, X.: Design of bristle-like TiO2–MWCNT nanotubes to improve the dielectric and interfacial properties of polymer-based composite films. RSC Adv. 4, 4985 (2014)

    Article  Google Scholar 

  12. 12.

    Li, W., Meng, Q., Zheng, Y.: Electric energy storage properties of poly (vinylidene fluoride). Appl. Phys. Lett. 96, 192905 (2010)

    Article  Google Scholar 

  13. 13.

    Huan, T.D., Boggs, S., Ramprasad, R., et al.: Advanced polymeric dielectrics for high energy density applications. Prog. Mater Sci. 83, 236 (2016)

    Article  Google Scholar 

  14. 14.

    Long, C., Wei, R., Liu, X.: Mechanical, dielectric, and rheological properties of poly (arylene ether nitrile)–reinforced poly (vinylidene fluoride). High Perform. Polym. 29, 178 (2017)

    Article  Google Scholar 

  15. 15.

    Lopez Manchado, M.A., Valentini, L., et al.: Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43, 1499 (2005)

    Article  Google Scholar 

  16. 16.

    Luo, B., Li, L., et al.: Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A. 2, 510 (2014)

    Article  Google Scholar 

  17. 17.

    Zhao, Y., Yang, W., Zhou, Y., et al.: Influence of molecular weight on the dielectric and energy storage properties of poly (vinylidene fluoride). Electron. Mater. Lett. 12, 779 (2016)

    Article  Google Scholar 

  18. 18.

    Diaham, S., Lebey, T., et al.: Dielectric breakdown of polyimide films: Area, thickness and temperature dependence. IEEE Trans. Dielectr. Electr. Insul. 17, 18 (2010)

    Article  Google Scholar 

  19. 19.

    Bunnak, N., Laoratanakul, P., Manuspiya, H., et al.: Dielectric properties improvement of polymer composite prepared from poly(vinylidene difluoride) and barium-modified porous clay heterostructure. Electron. Mater. Lett. 9, 351 (2013)

    Article  Google Scholar 

  20. 20.

    Schneuwly, A., Groning, P., Schlapbach, L.: Breakdown behavior of oil-impregnated polypropylene as dielectric in film capacitors. IEEE Trans. Dielectr. Electr. Insul. 5, 862 (1998)

    Article  Google Scholar 

Download references


The financial support from National Natural Science Foundation of China (51603029, 51773028, 51373028) and National Postdoctoral Program for Innovative Talents (BX201700044) are gratefully acknowledged.

Author information



Corresponding authors

Correspondence to Renbo Wei or Xiaobo Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, X., You, Y., Mao, H. et al. Energy Storage of Polyarylene Ether Nitriles at High Temperature. Electron. Mater. Lett. 14, 440–445 (2018).

Download citation


  • Energy storage
  • Pinhole shadowing effect
  • Polyarylene ether nitrile