Electronic Materials Letters

, Volume 14, Issue 4, pp 405–412 | Cite as

n-Type Conductivity of Cu2O Thin Film Prepared in Basic Aqueous Solution Under Hydrothermal Conditions

  • Daniel Ursu
  • Nicolae Miclau
  • Marinela MiclauEmail author


We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.


n-Type semiconductor Hydrothermal synthesis Cuprous oxide Intrinsic n-type defects 



This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI—UEFISCDI, Project No. PN-III-P2-2.1-PED-2016-0526, within PNCDI III.


  1. 1.
    Han, K.H., Tao, M.: Electrochemically deposited p–n homojunction cuprous oxide solar cells. Sol. Energy Mater. Sol. Cells 93, 153 (2009) CrossRefGoogle Scholar
  2. 2.
    Niesen, T.P., De Guire, M.R.: Review: deposition of ceramic thin films at low temperatures from aqueous solutions. Solid State Ion. 151, 61 (2002)CrossRefGoogle Scholar
  3. 3.
    Mahalingam, T., Chitra, J.S.P., Chu, J.P., Sebastian, P.J.: Preparation and microstructural studies of electrodeposited Cu2O thin films. Mater. Lett. 58, 1802 (2004)CrossRefGoogle Scholar
  4. 4.
    Mathew, X., Mathews, N.R., Sebastian, P.J.: Temperature dependence of the optical transitions n electrodeposited Cu2O thin films. Solar Energy Solar Cells 70, 277 (2001)CrossRefGoogle Scholar
  5. 5.
    Ristov, M., Sinadinovski, G.J.: Chemical deposition of Cu2O thin films. Thin Solid Films 123, 63 (1985)CrossRefGoogle Scholar
  6. 6.
    Shishiyanu, S.T., Shishiyanu, T.S., Lupan, O.I.: Novel NO2 gas sensor based on cuprous oxide. Thin Films Sens. Actuators B 113, 468 (2006)CrossRefGoogle Scholar
  7. 7.
    Leng, M., Liu, M.Z., Zhang, Y.B., Wang, Z.Q., Yu, C., Yang, X.G., Zhang, H.J., Wang, C.: Polyhedral 50-Facet Cu2O microcrystals partially enclosed by {311} high-index planes: synthesis and enhanced catalytic CO oxidation activity. J. Am. Chem. Soc. 132, 17084 (2010)CrossRefGoogle Scholar
  8. 8.
    Wang, S.Y., Huang, C.W., Lee, D.Y., Tseng, T.Y., Chang, T.C.: Multilevel resistive switching in Ti/CuxO/Pt memory devices. J. Appl. Phys. 109, 114110 (2010)CrossRefGoogle Scholar
  9. 9.
    Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Taracon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000)CrossRefGoogle Scholar
  10. 10.
    Wei, H.M., Gong, H.B., Chen, L., Zi, M., Cao, B.Q.: Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. J. Phys. Chem. C 116, 10510 (2012)CrossRefGoogle Scholar
  11. 11.
    Minami, T., Nishi, Y., Miyata, T.: Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet. Appl. Phys. Express 8, 022301 (2015)CrossRefGoogle Scholar
  12. 12.
    Luo, J., Steier, L., Son, M.K., Schreier, M., Mayer, M.T., Grätzel, M.: Cu2O Nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 16(3), 1848 (2016)CrossRefGoogle Scholar
  13. 13.
    Yang, Y., Xu, D., Wu, Q., Diao, P.: Cu2O/CuO Bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci. Rep. 6, 35158 (2016)CrossRefGoogle Scholar
  14. 14.
    Tang, Q., Li, T., Chen, X., Yu, D., Qian, Y.: Efficient field emission from well-oriented Cu2O film. Solid State Commun. 134, 229 (2005)CrossRefGoogle Scholar
  15. 15.
    Maruyama, T.: Jpn. Copper Oxide thin films prepared from Copper Dipivaloylmethanate and Oxygen by chemical vapor deposition. J. Appl. Phys. 37, 4099 (1998)CrossRefGoogle Scholar
  16. 16.
    Choi, J., Kim, S.J., Lee, J., Nam, S.C., Kang, J., Chang, J.H.: Controlled growth of Cu2O particles on a hexagonally nanopatterned aluminium substrate. Nanotechnology 18, 215303 (2007)CrossRefGoogle Scholar
  17. 17.
    Reddy, A., Uthanna, S., Reddy, P.: Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures. Appl. Surf. Sci. 253, 5287 (2007)CrossRefGoogle Scholar
  18. 18.
    Richardson, T.J., Slack, J.L., Rubin, M.D.: Electrochromism in copper oxide thin films. Electrochim. Acta 46, 2281 (2001)CrossRefGoogle Scholar
  19. 19.
    Fernando, C.A.N., Wetthasinghe, S.K.: Investigation of photoelectrochemical characteristics of n-type Cu2O films. Sol. Energy Mater. Sol. Cells 63, 299 (2000)CrossRefGoogle Scholar
  20. 20.
    Wijesundara, R.P., Perera, L.D.R.D., Jayasuriya, K.D., Siripala, W., De Silva, K.T.L., Samantilleke, A.P., Dharmadasa, I.M.: Sulphidation of electrodeposited cuprous oxide thin films for photovoltaic applications. Sol. Energy Mater. Sol. Cells 61, 277 (2000)CrossRefGoogle Scholar
  21. 21.
    McShane, C.M., Choi, K.S.: Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J. Am. Chem. Soc. 131, 2561 (2009)CrossRefGoogle Scholar
  22. 22.
    Rakhshani, A.E.: Preparation, characteristics and photovoltaic properties of cuprous oxide—A review. Solid State Electron. 29, 7 (1986)CrossRefGoogle Scholar
  23. 23.
    Siripala, W., Jayakody, J.R.P.: Observation of n-type photoconductivity in electrodeposited copper oxide film electrodes in a photoelectrochemical cell. Sol. Energy Mater. 14, 23 (1986)CrossRefGoogle Scholar
  24. 24.
    Xionga, L., Huanga, S., Yanga, X., Qiuc, M., Chena, Z., Yu, Y.: p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties. Electrochim. Acta 56, 2735 (2011)CrossRefGoogle Scholar
  25. 25.
    Wang, W., Wu, D., Zhang, Q., Wang, L., Tao, M.: PH -dependence of conduction type in cuprous oxide synthesized from solution. J. Appl. Phys. 107, 123717 (2010)CrossRefGoogle Scholar
  26. 26.
    Scanlon, D.O., Watson, G.: Undoped n-Type Cu2O: Fact or fiction? J. Phys. Chem. Lett. 1, 2582 (2010)CrossRefGoogle Scholar
  27. 27.
    Nian, J.N., Tsai, C.C., Lin, P.C.: Elucidating the conductivity-type transition mechanism of p-type Cu2O films from electrodeposition. J. Electrochem. Soc. 156, H567 (2009)CrossRefGoogle Scholar
  28. 28.
    Kubelka, P.: New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 38, 448 (1948)CrossRefGoogle Scholar
  29. 29.
    Xiong, L.B., Ouyang, M.L., Yan, L.L., Li, J.L., Qiu, M.Q., Yu, Y.: Visible-light energy storage by Ti3+ in TiO2/Cu2O Bilayer film. Chem. Lett. 38, 1154 (2009)CrossRefGoogle Scholar
  30. 30.
    Zhang, Z.H., Wang, P.: Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 22, 2456 (2012)CrossRefGoogle Scholar
  31. 31.
    Yang, X.Y., Wolcott, A., Wang, G.M., Sobo, A., Fitzmorris, R.C., Qian, F., Zhang, J.Z., Li, Y.: Nitrogen-Doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331 (2009)CrossRefGoogle Scholar
  32. 32.
    Jiang, T., Xie, T., Yang, W., Fan, H., Wang, D.: Photoinduced charge transfer process in p-Cu2O/n-Cu2O homojunction film and its photoelectric gassensing properties. J. Colloid Interface Sci. 405, 242 (2013)CrossRefGoogle Scholar
  33. 33.
    Beverskog, B., Puigdomenech, I.: Revised Pourbaix Diagrams for Copper at 25 to 300 °C. J. Electrochem. Soc. 144, 3476 (1997)CrossRefGoogle Scholar
  34. 34.
    Sander, T., Reindl, C.T., Giar, M., Eifert, B., Heinemann, M., Heiliger, C., Klar, P.J.: Correlation of intrinsic point defects and the Raman modes of cuprous oxide. Phys. Rev. B 90(045203), 1 (2014)Google Scholar
  35. 35.
    Ishizuka, S., Kato, S., Okamoto, Y., Akimoto, K.: Hydrogen treatment for polycrystalline nitrogen-doped Cu2O thin film. J. Cryst. Growth 237–239, 616 (2002)CrossRefGoogle Scholar
  36. 36.
    Otte, K., Lippold, G., Hirsh, D., Gebhardt, R.K., Chassa, T.: Conductivity type conversion of p-type CuInSe2 due to hydrogenation. Appl. Surf. Sci. 179, 203 (2001)CrossRefGoogle Scholar
  37. 37.
    Kilic, C., Zunger, A.: n-type doping of oxides by hydrogen. Appl. Phys. Lett. 81, 73 (2002)CrossRefGoogle Scholar
  38. 38.
    Subramanian, S., Valantina, R., Ramanathan, C.: Structural and electronic properties of CuO, CuO2 and Cu2O nanoclusters – a DFT approach. Mater. Sci. 21(2), 173 (2015)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.National Institute for Research and Development in Electrochemistry and Condensed Matter, TimisoaraTimisoaraRomania
  2. 2.Politehnica University TimisoaraTimisoaraRomania

Personalised recommendations