The Effect of Low Energy Nitrogen Ion Implantation on Graphene Nanosheets

Abstract

Herein, we report the effect 50 keV nitrogen ion implantation at varying fluence on the optical properties of graphene nanosheets (number of layers < 5). Initially, graphene nanosheets synthesized by the direct liquid exfoliation of graphite layers were deposited on a cleaned Si-substrate by drop cast method. These graphene nanosheets are implanted with 50 keV nitrogen-ion beam at six different fluences. Raman spectroscopic results show that the D, D′ and G peak get broadened up to the nitrogen ion fluence of 1 × 1015 ions/cm2, while 2D peak of graphene nanosheets disappeared for nitrogen-ions have fluence more than 1014 ions/cm2. However, further increase of fluence causes the indistinguishable superimposition of D, D′ and G peaks. Surface contact potential value analysis for ion implanted graphene nanosheets shows the increase in defect concentration from 1.15 × 1012 to 1.98 × 1014 defects/cm2 with increasing the nitrogen ion fluence, which resembles the Fermi level shift towards conduction band. XRD spectra confirmed that the crystallinity of graphene nanosheets was found to tamper with increasing fluence. These results revealed that the limit of nitrogen ion implantation resistant on the vibrational behaviors for graphene nanosheets was 1015 ions/cm2 that opens up the scope of application of graphene nanosheets in device fabrication for ion-active environment and space applications.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  Google Scholar 

  2. 2.

    Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  Google Scholar 

  3. 3.

    Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P.: 100-GHz Transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010)

    Article  Google Scholar 

  4. 4.

    Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4, 611622 (2010)

    Article  Google Scholar 

  5. 5.

    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  6. 6.

    Balandin, A.A., Ghosh, G., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior Thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  7. 7.

    Guo, M., Li, D., Zhao, M., Zhang, Y., Geng, D., Lushington, A., Sun, X.: Nitrogen ion implanted graphene as thrombo-protective safer and cytoprotective alternative for biomedical applications. Carbon 61, 321–328 (2013)

    Article  Google Scholar 

  8. 8.

    Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., et al.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  Google Scholar 

  9. 9.

    Ochedowski, O., Begall, G., Scheuschner, N., Kharrazi, M.E., Maultzsch, J., Schleberger, M.: Graphene on Si (111)7×7. Nanotechnology 23, 05708 (2012)

    Article  Google Scholar 

  10. 10.

    Han, M.Y., Ozyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  Google Scholar 

  11. 11.

    Yu, Y.J., Zhao, Y., Ryu, S., Brus, L.E., Kim, K.S., Kim, P.: Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430–3434 (2009)

    Article  Google Scholar 

  12. 12.

    Teweldebrhan, D., Balandin, A.A.: Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 94, 013101 (2009)

    Article  Google Scholar 

  13. 13.

    Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  14. 14.

    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., Mcgovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., et al.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)

    Article  Google Scholar 

  15. 15.

    Kamarou, A., Wesch, W., Wendler, E.: Radiation damage formation in InP, InSb, GaAs, GaP, Ge, and Si due to fast ions. Phys. Rev. B 78, 054111 (2008)

    Article  Google Scholar 

  16. 16.

    Cress, C.D., Schmucker, S.W., Friedman, A.L., Dev, P., Culbertson, J.C., Lyding, J.W., Robinson, J.T.: Nitrogen-doped graphene and twisted bilayer graphene via hyperthermal ion implantation with depth control. ACS Nano 10, 3714–3722 (2016)

    Article  Google Scholar 

  17. 17.

    Kepaptsoglou, D., Hardcastle, T.P., Seabourne, C.R., Bangert, U., Zan, R., Amani, J.A., Hofsass, H., Nicholls, R.J., Brydson, R.M.D., Scott, A.J., Ramasse, Q.M.: Electronic structure modification of ion implanted graphene: The spectroscopic signatures of p- and n-type doping. ACS Nano 9, 11398–11407 (2015)

    Article  Google Scholar 

  18. 18.

    Ochedowski, O., Osmani, O., Schade, M., Bussmann, B.K., Ban-d’Etat, B., Lebius, H., Schleberger, M.: Graphitic nanostripes in silicon carbide surfaces created by swift heavy ion irradiation. Nat. Commun. 5, 3913 (2014)

    Article  Google Scholar 

  19. 19.

    Liao, Z., Zhang, T., Gall, M., Dianat, A., Rosenkranz, R., Jordan, R., Cuniberti, G., Zschech, E.: Lateral damage in graphene carved by high energy focused gallium ion beams. Appl. Phys. Lett. 107, 13108 (2015)

    Article  Google Scholar 

  20. 20.

    Jian, Z., Jie, L., Xia, Z.S., Fei, Z.P., Jun, Y.H., Lai, D.J., Hang, G., Dong, H.M., Mei, S.Y.: Irradiation effects of graphene and thin layer graphite induced by swift heavy ions. Chin. Phys. B 24, 086103 (2015)

    Article  Google Scholar 

  21. 21.

    Gruber, E., Wilhelm, R.A., Pétuya, R., Smejkal, V., Kozubek, R., Hierzenberger, A., Bayer, B.C., Aldazabal, I., Kazansky, A.K., Libisch, F., Krasheninnikov, A.V., Schleberger, M., Facsko, S., Borisov, A.G., Arnau, A., Aumayr, F.: Ultrafast electronic response of graphene to a strong and localized electric field. Nat. Commun. 7, 13948 (2016)

    Article  Google Scholar 

  22. 22.

    Lehtinen, O., Kotakoski, J., Krasheninnikov, A.V., Tolvanen, A., Nordlund, K., Keinonen, J.: Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation. Phys. Rev. B 81, 153401 (2010)

    Article  Google Scholar 

  23. 23.

    Willke, P., Amani, J.A., Sinterhauf, A., Thakur, S., Kotzott, T., Druga, T., Weikert, S., Maiti, K., Hofsäss, H., Wenderoth, M.: Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties. Nano Lett. 15, 5110–5115 (2015)

    Article  Google Scholar 

  24. 24.

    Ochedowski, O., Bussmann, B.K., Ban-d’Etat, B., Lebius, H., Schleberger, M.: Manipulation of the graphene surface potential by ion irradiation. Appl. Phys. Lett. 102, 153103 (2013)

    Article  Google Scholar 

  25. 25.

    Prevel, B., Benoit, J.M., Bardotti, L., Melinon, P., Ouerghi, A., Lucot, D., Bourhis, E., Gierak, J.: Nanostructuring graphene on SiC by focused ion beam: Effect of the ion fluence. Appl. Phys. Lett. 99, 083116 (2011)

    Article  Google Scholar 

  26. 26.

    Bai, Z., Zhang, L., Liu, L.: Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles. Nanoscale 8, 8761 (2016)

    Article  Google Scholar 

  27. 27.

    Bangert, U., Pierce, W., Kepaptsoglou, D.M., Ramasse, Q., Zan, R., Gass, M.H., Berg, J.A.V., Boothroyd, C., Amani, J., Hofsäss, H.: Ion implantation of graphene-toward IC compatible technologies. Nano Lett. 13, 4902–4907 (2013)

    Article  Google Scholar 

  28. 28.

    Telychko, M., Mutombo, P., Ondracek, M., Hapala, P., Bocquet, F.C., Kolorenc, J., Vondracek, M., Jelınek, P., Svec, M.: Achieving high-quality single-atom nitrogen doping of graphene/SiC(0001) by ion implantation and subsequent thermal stabilization. ACS Nano 8, 7318–7324 (2014)

    Article  Google Scholar 

  29. 29.

    Toulemonde, M., Paumier, E., Dufour, C.: Thermal spike model in the electronic stopping power regime. Radiat. Eff. Defects Solids 126, 201–206 (1993)

    Article  Google Scholar 

  30. 30.

    Bringa, E.M., Johnson, R.E.: Coulomb explosion and thermal spikes. Phys. Rev. Lett. 88, 165501 (2002)

    Article  Google Scholar 

  31. 31.

    Mishra, M., Meinerzhagen, F., Schleberger, M., Kanjilal, D., Mohanty, T.: Swift heavy ion induced optical and electronic modifications of graphene-TiO2 nanocomposites. J. Phys. Chem. C 119, 21270–21277 (2015)

    Article  Google Scholar 

  32. 32.

    Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  33. 33.

    Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

    Article  Google Scholar 

  34. 34.

    Biersack, J.P., Haggmark, L.A.: A Monte carlo computer program for the transport of energetic ions in amorphous targets. Nucl. Instrum. Methods 174, 257–269 (1980)

    Article  Google Scholar 

  35. 35.

    Lucchese, M.M., Stavale, F., Ferreira, E.H., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., Jorio, A.: Quantifying ion-induced defects and raman relaxation length in graphene. Carbon 48, 1592–1597 (2010)

    Article  Google Scholar 

  36. 36.

    Venezuela, P., Lazzeri, M., Mauri, F.: Theory of double-resonant raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 84, 035433 (2011)

    Article  Google Scholar 

  37. 37.

    Zabel, J., Nair, R.R., Ott, A., Georgiou, T., Geim, A.K., Novoselov, K.S., Casiraghi, C.: Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 12, 617–621 (2012)

    Article  Google Scholar 

  38. 38.

    Huang, M., Yan, H., Heinz, T.F., Hone, J.: Probing strain-induced electronic structure change in graphene by raman spectroscopy. Nano Lett. 10, 4074–4079 (2010)

    Article  Google Scholar 

  39. 39.

    Cancado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., Ferrari, A.C.: Quantifying defects in graphene via raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011)

    Article  Google Scholar 

  40. 40.

    Mohiuddin, T.M.G., Lombardo, A., Nair, R.R., Bonetti, A., Savini, G., Jalil, R., Bonini, N., Basko, D.M., Galiotis, C., Marzari, N., et al.: Uniaxial strain in graphene by raman spectroscopy: G peak splitting, grüneisen parameters and sample orientation. Phys. Rev. B 79, 205433 (2009)

    Article  Google Scholar 

  41. 41.

    Bartolo, B.D.: Optical interactions in solids. Wiley, New York (1968)

    Google Scholar 

  42. 42.

    Postmus, C., Ferraro, J.R., Mitra, S.S.: Pressure dependence of infrared eigen-frequencies of KCl and KBr. Phys. Rev. 174, 983–987 (1968)

    Article  Google Scholar 

  43. 43.

    Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A., Ruoff, R.S.: Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593–1597 (2009)

    Article  Google Scholar 

  44. 44.

    Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Yao, J.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)

    Article  Google Scholar 

  45. 45.

    Jeon, I.Y., Yu, D., Bae, S.Y., Choi, H.J., Chang, D.W., Dai, L., Baek, J.B.: Formation of large-area nitrogen-doped graphene film prepared from simple solution casting of edge-selectively functionalized graphite and its electrocatalytic activity. Chem. Mater. 23, 3987–3992 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Authors MM, SA and TM are thankful to IUAC Delhi for carrying out Raman and FESEM measurements and CSIR-Central Electrochemical Research Institute Karaikudi, Tamilnadu, India for XPS measurement. One of the authors MM is thankful to CSIR, India for providing senior research fellowship [09/263(0838)/2010-EMR-I]. SA Acknowledges CSIR-CECRI for supporting his research with startup fund (OLP 0088). Author(s) thank Mr. Kennedy at CSIR-CECRI for assisting them with XPS measurements.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mukesh Mishra or Subbiah Alwarappan or Tanuja Mohanty.

Ethics declarations

Conflict of interest

The Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, M., Alwarappan, S., Kanjilal, D. et al. The Effect of Low Energy Nitrogen Ion Implantation on Graphene Nanosheets. Electron. Mater. Lett. 14, 488–498 (2018). https://doi.org/10.1007/s13391-018-0046-x

Download citation

Keywords

  • Graphene nanosheets
  • Low energy ion implantation
  • Fluence
  • Defect concentration