Electronic Materials Letters

, Volume 14, Issue 4, pp 488–498 | Cite as

The Effect of Low Energy Nitrogen Ion Implantation on Graphene Nanosheets

  • Mukesh MishraEmail author
  • Subbiah AlwarappanEmail author
  • Dinakar Kanjilal
  • Tanuja MohantyEmail author


Herein, we report the effect 50 keV nitrogen ion implantation at varying fluence on the optical properties of graphene nanosheets (number of layers < 5). Initially, graphene nanosheets synthesized by the direct liquid exfoliation of graphite layers were deposited on a cleaned Si-substrate by drop cast method. These graphene nanosheets are implanted with 50 keV nitrogen-ion beam at six different fluences. Raman spectroscopic results show that the D, D′ and G peak get broadened up to the nitrogen ion fluence of 1 × 1015 ions/cm2, while 2D peak of graphene nanosheets disappeared for nitrogen-ions have fluence more than 1014 ions/cm2. However, further increase of fluence causes the indistinguishable superimposition of D, D′ and G peaks. Surface contact potential value analysis for ion implanted graphene nanosheets shows the increase in defect concentration from 1.15 × 1012 to 1.98 × 1014 defects/cm2 with increasing the nitrogen ion fluence, which resembles the Fermi level shift towards conduction band. XRD spectra confirmed that the crystallinity of graphene nanosheets was found to tamper with increasing fluence. These results revealed that the limit of nitrogen ion implantation resistant on the vibrational behaviors for graphene nanosheets was 1015 ions/cm2 that opens up the scope of application of graphene nanosheets in device fabrication for ion-active environment and space applications.

Graphical Abstract


Graphene nanosheets Low energy ion implantation Fluence Defect concentration 



Authors MM, SA and TM are thankful to IUAC Delhi for carrying out Raman and FESEM measurements and CSIR-Central Electrochemical Research Institute Karaikudi, Tamilnadu, India for XPS measurement. One of the authors MM is thankful to CSIR, India for providing senior research fellowship [09/263(0838)/2010-EMR-I]. SA Acknowledges CSIR-CECRI for supporting his research with startup fund (OLP 0088). Author(s) thank Mr. Kennedy at CSIR-CECRI for assisting them with XPS measurements.

Compliance with Ethical Standards

Conflict of interest

The Authors declare that they have no conflict of interest.


  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438, 201–204 (2005)CrossRefGoogle Scholar
  3. 3.
    Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P.: 100-GHz Transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010)CrossRefGoogle Scholar
  4. 4.
    Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4, 611622 (2010)CrossRefGoogle Scholar
  5. 5.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  6. 6.
    Balandin, A.A., Ghosh, G., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior Thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  7. 7.
    Guo, M., Li, D., Zhao, M., Zhang, Y., Geng, D., Lushington, A., Sun, X.: Nitrogen ion implanted graphene as thrombo-protective safer and cytoprotective alternative for biomedical applications. Carbon 61, 321–328 (2013)CrossRefGoogle Scholar
  8. 8.
    Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., et al.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)CrossRefGoogle Scholar
  9. 9.
    Ochedowski, O., Begall, G., Scheuschner, N., Kharrazi, M.E., Maultzsch, J., Schleberger, M.: Graphene on Si (111)7×7. Nanotechnology 23, 05708 (2012)CrossRefGoogle Scholar
  10. 10.
    Han, M.Y., Ozyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)CrossRefGoogle Scholar
  11. 11.
    Yu, Y.J., Zhao, Y., Ryu, S., Brus, L.E., Kim, K.S., Kim, P.: Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430–3434 (2009)CrossRefGoogle Scholar
  12. 12.
    Teweldebrhan, D., Balandin, A.A.: Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 94, 013101 (2009)CrossRefGoogle Scholar
  13. 13.
    Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  14. 14.
    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., Mcgovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., et al.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)CrossRefGoogle Scholar
  15. 15.
    Kamarou, A., Wesch, W., Wendler, E.: Radiation damage formation in InP, InSb, GaAs, GaP, Ge, and Si due to fast ions. Phys. Rev. B 78, 054111 (2008)CrossRefGoogle Scholar
  16. 16.
    Cress, C.D., Schmucker, S.W., Friedman, A.L., Dev, P., Culbertson, J.C., Lyding, J.W., Robinson, J.T.: Nitrogen-doped graphene and twisted bilayer graphene via hyperthermal ion implantation with depth control. ACS Nano 10, 3714–3722 (2016)CrossRefGoogle Scholar
  17. 17.
    Kepaptsoglou, D., Hardcastle, T.P., Seabourne, C.R., Bangert, U., Zan, R., Amani, J.A., Hofsass, H., Nicholls, R.J., Brydson, R.M.D., Scott, A.J., Ramasse, Q.M.: Electronic structure modification of ion implanted graphene: The spectroscopic signatures of p- and n-type doping. ACS Nano 9, 11398–11407 (2015)CrossRefGoogle Scholar
  18. 18.
    Ochedowski, O., Osmani, O., Schade, M., Bussmann, B.K., Ban-d’Etat, B., Lebius, H., Schleberger, M.: Graphitic nanostripes in silicon carbide surfaces created by swift heavy ion irradiation. Nat. Commun. 5, 3913 (2014)CrossRefGoogle Scholar
  19. 19.
    Liao, Z., Zhang, T., Gall, M., Dianat, A., Rosenkranz, R., Jordan, R., Cuniberti, G., Zschech, E.: Lateral damage in graphene carved by high energy focused gallium ion beams. Appl. Phys. Lett. 107, 13108 (2015)CrossRefGoogle Scholar
  20. 20.
    Jian, Z., Jie, L., Xia, Z.S., Fei, Z.P., Jun, Y.H., Lai, D.J., Hang, G., Dong, H.M., Mei, S.Y.: Irradiation effects of graphene and thin layer graphite induced by swift heavy ions. Chin. Phys. B 24, 086103 (2015)CrossRefGoogle Scholar
  21. 21.
    Gruber, E., Wilhelm, R.A., Pétuya, R., Smejkal, V., Kozubek, R., Hierzenberger, A., Bayer, B.C., Aldazabal, I., Kazansky, A.K., Libisch, F., Krasheninnikov, A.V., Schleberger, M., Facsko, S., Borisov, A.G., Arnau, A., Aumayr, F.: Ultrafast electronic response of graphene to a strong and localized electric field. Nat. Commun. 7, 13948 (2016)CrossRefGoogle Scholar
  22. 22.
    Lehtinen, O., Kotakoski, J., Krasheninnikov, A.V., Tolvanen, A., Nordlund, K., Keinonen, J.: Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation. Phys. Rev. B 81, 153401 (2010)CrossRefGoogle Scholar
  23. 23.
    Willke, P., Amani, J.A., Sinterhauf, A., Thakur, S., Kotzott, T., Druga, T., Weikert, S., Maiti, K., Hofsäss, H., Wenderoth, M.: Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties. Nano Lett. 15, 5110–5115 (2015)CrossRefGoogle Scholar
  24. 24.
    Ochedowski, O., Bussmann, B.K., Ban-d’Etat, B., Lebius, H., Schleberger, M.: Manipulation of the graphene surface potential by ion irradiation. Appl. Phys. Lett. 102, 153103 (2013)CrossRefGoogle Scholar
  25. 25.
    Prevel, B., Benoit, J.M., Bardotti, L., Melinon, P., Ouerghi, A., Lucot, D., Bourhis, E., Gierak, J.: Nanostructuring graphene on SiC by focused ion beam: Effect of the ion fluence. Appl. Phys. Lett. 99, 083116 (2011)CrossRefGoogle Scholar
  26. 26.
    Bai, Z., Zhang, L., Liu, L.: Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles. Nanoscale 8, 8761 (2016)CrossRefGoogle Scholar
  27. 27.
    Bangert, U., Pierce, W., Kepaptsoglou, D.M., Ramasse, Q., Zan, R., Gass, M.H., Berg, J.A.V., Boothroyd, C., Amani, J., Hofsäss, H.: Ion implantation of graphene-toward IC compatible technologies. Nano Lett. 13, 4902–4907 (2013)CrossRefGoogle Scholar
  28. 28.
    Telychko, M., Mutombo, P., Ondracek, M., Hapala, P., Bocquet, F.C., Kolorenc, J., Vondracek, M., Jelınek, P., Svec, M.: Achieving high-quality single-atom nitrogen doping of graphene/SiC(0001) by ion implantation and subsequent thermal stabilization. ACS Nano 8, 7318–7324 (2014)CrossRefGoogle Scholar
  29. 29.
    Toulemonde, M., Paumier, E., Dufour, C.: Thermal spike model in the electronic stopping power regime. Radiat. Eff. Defects Solids 126, 201–206 (1993)CrossRefGoogle Scholar
  30. 30.
    Bringa, E.M., Johnson, R.E.: Coulomb explosion and thermal spikes. Phys. Rev. Lett. 88, 165501 (2002)CrossRefGoogle Scholar
  31. 31.
    Mishra, M., Meinerzhagen, F., Schleberger, M., Kanjilal, D., Mohanty, T.: Swift heavy ion induced optical and electronic modifications of graphene-TiO2 nanocomposites. J. Phys. Chem. C 119, 21270–21277 (2015)CrossRefGoogle Scholar
  32. 32.
    Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  33. 33.
    Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)CrossRefGoogle Scholar
  34. 34.
    Biersack, J.P., Haggmark, L.A.: A Monte carlo computer program for the transport of energetic ions in amorphous targets. Nucl. Instrum. Methods 174, 257–269 (1980)CrossRefGoogle Scholar
  35. 35.
    Lucchese, M.M., Stavale, F., Ferreira, E.H., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., Jorio, A.: Quantifying ion-induced defects and raman relaxation length in graphene. Carbon 48, 1592–1597 (2010)CrossRefGoogle Scholar
  36. 36.
    Venezuela, P., Lazzeri, M., Mauri, F.: Theory of double-resonant raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 84, 035433 (2011)CrossRefGoogle Scholar
  37. 37.
    Zabel, J., Nair, R.R., Ott, A., Georgiou, T., Geim, A.K., Novoselov, K.S., Casiraghi, C.: Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 12, 617–621 (2012)CrossRefGoogle Scholar
  38. 38.
    Huang, M., Yan, H., Heinz, T.F., Hone, J.: Probing strain-induced electronic structure change in graphene by raman spectroscopy. Nano Lett. 10, 4074–4079 (2010)CrossRefGoogle Scholar
  39. 39.
    Cancado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., Ferrari, A.C.: Quantifying defects in graphene via raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011)CrossRefGoogle Scholar
  40. 40.
    Mohiuddin, T.M.G., Lombardo, A., Nair, R.R., Bonetti, A., Savini, G., Jalil, R., Bonini, N., Basko, D.M., Galiotis, C., Marzari, N., et al.: Uniaxial strain in graphene by raman spectroscopy: G peak splitting, grüneisen parameters and sample orientation. Phys. Rev. B 79, 205433 (2009)CrossRefGoogle Scholar
  41. 41.
    Bartolo, B.D.: Optical interactions in solids. Wiley, New York (1968)Google Scholar
  42. 42.
    Postmus, C., Ferraro, J.R., Mitra, S.S.: Pressure dependence of infrared eigen-frequencies of KCl and KBr. Phys. Rev. 174, 983–987 (1968)CrossRefGoogle Scholar
  43. 43.
    Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A., Ruoff, R.S.: Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593–1597 (2009)CrossRefGoogle Scholar
  44. 44.
    Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Yao, J.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)CrossRefGoogle Scholar
  45. 45.
    Jeon, I.Y., Yu, D., Bae, S.Y., Choi, H.J., Chang, D.W., Dai, L., Baek, J.B.: Formation of large-area nitrogen-doped graphene film prepared from simple solution casting of edge-selectively functionalized graphite and its electrocatalytic activity. Chem. Mater. 23, 3987–3992 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.CSIR-Central Electrochemical Research InstituteKaraikudiIndia
  3. 3.Inter University Accelerator CentreNew DelhiIndia

Personalised recommendations