Skip to main content
Log in

Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = − 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = − 10 V and ETH = 500 MV/m.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lüssem, B., Günther, A., Fischer, A., Kasemann, D., Leo, K.: Vertical organic transistors. J. Phys. Condens. Matter 27, 443003 (2015)

    Article  Google Scholar 

  2. Kim, D., Jeong, J., Im, H., Ahn, S., Jeon, H., Lee, C., Hong, Y.: Holography and plasma oxidation for uniform nanoscale two dimensional channel formation of vertical organic field-effect transistors with suppressed gate leakage current. Org. Electron. 12, 1841 (2011)

    Article  Google Scholar 

  3. Ben-Sasson, A.J., Avnon, E., Ploshnik, E., Globerman, O., Shenhar, R., Frey, G.L., Tessler, N.: Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Appl. Phys. Lett. 95, 213301 (2009)

    Article  Google Scholar 

  4. Ben-Sasson, A.J., Tessler, N.: Patterned electrode vertical field effect transistor: theory and experiment. J. Appl. Phys. 110, 44501 (2011)

    Article  Google Scholar 

  5. Chao, Y.-C., Ku, M.-C., Tsai, W.-W., Zan, H.-W., Meng, H.-F., Tsai, H.-K., Horng, S.-F.: Polymer space-charge-limited transistor as a solid-state vacuum tube triode. Appl. Phys. Lett. 97, 223307 (2010)

    Article  Google Scholar 

  6. McElvain, J., Keshavarz, M., Wang, H., Wudl, F., Heeger, A.J.: Fullerene-based polymer grid triodes. J. Appl. Phys. 81, 6468 (1997)

    Article  Google Scholar 

  7. Wang, P., Liu, B., Shen, Y., Zheng, Y., Mccarthy, M.A., Holloway, P., Rinzler, A.G.: N-channel carbon nanotube enabled vertical field effect transistors with solution deposited ZnO nanoparticle based channel layers. Appl. Phys. Lett. 100, 173514 (2012)

    Article  Google Scholar 

  8. Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G.: Transparent, conductive carbon nanotube films. Science 305, 1273 (2004)

    Article  Google Scholar 

  9. Kumar, A., Zhou, C.: The race to replace tin-doped indium oxide: which material will win? ACS Nano 4, 11 (2010)

    Article  Google Scholar 

  10. Ben-Sasson, A.J., Azulai, D., Gilon, H., Facchetti, A., Markovich, G., Tessler, N.: Self-assembled metallic nanowire-based vertical organic field-effect transistor. ACS Appl. Mater. Interfaces 7, 2149 (2015)

    Article  Google Scholar 

  11. Chen, W., Rinzler, A., Guo, J.: Computational study of graphene-based vertical field effect transistor. J. Appl. Phys. 113, 94507 (2013)

    Article  Google Scholar 

  12. Fiori, G., Bruzzone, S., Iannaccone, G.: Very large current modulation in vertical heterostructure graphene/hBN transistors. IEEE Trans. Electron Devices 60, 268 (2013)

    Article  Google Scholar 

  13. Ma, L., Yang, Y.: Unique architecture and concept for high-performance organic transistors. Appl. Phys. Lett. 85, 5084 (2004)

    Article  Google Scholar 

  14. Zhao, K., Deng, J., Wu, X., Cheng, X., Wei, J., Yin, S.: Fabrication and characteristics of permeable-base organic transistors based on co-evaporated pentacene: Al base. Org. Electron. 12, 1003 (2011)

    Article  Google Scholar 

  15. Huang, J., Yi, M., Ma, D., Hümmelgen, I.A.: Vertical structure p-type permeable metal-base organic transistors based on N,N′-diphentyl-N,N′-bis(1-naphthylphenyl)-1,1′-biphenyl-4,4′-diamine. Appl. Phys. Lett. 92, 232111 (2008)

    Article  Google Scholar 

  16. Kvitschal, A., Cruz-Cruz, I., Hümmelgen, I.A.: Copper phthalocyanine based vertical organicfield effect transistor with naturally patterned tin intermediate grid electrode. Org. Electron. 27, 155 (2015)

    Article  Google Scholar 

  17. Evans, B.L., Xu, S.: The nucleation and growth of thin films. In: SPIE, p. 90 (1990)

  18. Venables, J.A., Spiller, G.D.T., Hanbucken, M.: Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984)

    Article  Google Scholar 

  19. Bao, Z., Locklin, J.: Organic Field-Effetc Transistor. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  20. Li, Y., Matsuura, R., Saka, M.: Controlling surface morphology of Sn thin-film to enhance cycling performance in lithium ion batteries. Mater. Res. Bull. 87, 155 (2017)

    Article  Google Scholar 

  21. Lin, W.Y., Müller, R., Myny, K., Steudel, S., Genoe, J., Heremans, P.: Room-temperature solution-processed high-k gate dielectrics for large area electronics applications. Org. Electron. 12, 955 (2011)

    Article  Google Scholar 

  22. Kleemann, H., Günther, A.A., Leo, K., Lüssem, B.: High-performance vertical organic transistors. Small 9, 3670 (2013)

    Article  Google Scholar 

  23. Ben-Sasson, A.J., Greenman, M., Roichman, Y., Tessler, N.: The mechanism of operation of lateral and vertical organic field effect transistors. Isr. J. Chem. 54, 568 (2014)

    Article  Google Scholar 

  24. Tanase, C., Meijer, E.J., Blom, P.W.M., de Leeuw, D.M.: Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003)

    Article  Google Scholar 

  25. Shin, K., Yang, C., Yang, S.Y., Jeon, H., Park, C.E.: Effects of polymer gate dielectrics roughness on pentacene field-effect transistors. Appl. Phys. Lett. 88, 72109 (2006)

    Article  Google Scholar 

  26. Kumar, S., Dhar, A.: Low operating voltage n-channel organic field effect transistors using lithium fluoride/PMMA bilayer gate dielectric. Mater. Res. Bull. 70, 590 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Programa de Pós-graduação em Ciência e Tecnologia de Materiais (POSMAT), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for the project funding proc. 2013/26973-5 and proc. 2014/13015-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Leonardo Nogueira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, G.L., da Silva Ozório, M., da Silva, M.M. et al. Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation. Electron. Mater. Lett. 14, 319–327 (2018). https://doi.org/10.1007/s13391-018-0034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0034-1

Keywords

Navigation