Electronic Materials Letters

, Volume 14, Issue 3, pp 319–327 | Cite as

Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

  • Gabriel Leonardo Nogueira
  • Maiza da Silva Ozório
  • Marcelo Marques da Silva
  • Rogério Miranda Morais
  • Neri Alves


We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = − 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = − 10 V and ETH = 500 MV/m.

Graphical Abstract


Vertical transistor Permeable electrode AL2O3/PMMA Thermal evaporation 



The authors would like to acknowledge the Programa de Pós-graduação em Ciência e Tecnologia de Materiais (POSMAT), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for the project funding proc. 2013/26973-5 and proc. 2014/13015-9.


  1. 1.
    Lüssem, B., Günther, A., Fischer, A., Kasemann, D., Leo, K.: Vertical organic transistors. J. Phys. Condens. Matter 27, 443003 (2015)CrossRefGoogle Scholar
  2. 2.
    Kim, D., Jeong, J., Im, H., Ahn, S., Jeon, H., Lee, C., Hong, Y.: Holography and plasma oxidation for uniform nanoscale two dimensional channel formation of vertical organic field-effect transistors with suppressed gate leakage current. Org. Electron. 12, 1841 (2011)CrossRefGoogle Scholar
  3. 3.
    Ben-Sasson, A.J., Avnon, E., Ploshnik, E., Globerman, O., Shenhar, R., Frey, G.L., Tessler, N.: Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Appl. Phys. Lett. 95, 213301 (2009)CrossRefGoogle Scholar
  4. 4.
    Ben-Sasson, A.J., Tessler, N.: Patterned electrode vertical field effect transistor: theory and experiment. J. Appl. Phys. 110, 44501 (2011)CrossRefGoogle Scholar
  5. 5.
    Chao, Y.-C., Ku, M.-C., Tsai, W.-W., Zan, H.-W., Meng, H.-F., Tsai, H.-K., Horng, S.-F.: Polymer space-charge-limited transistor as a solid-state vacuum tube triode. Appl. Phys. Lett. 97, 223307 (2010)CrossRefGoogle Scholar
  6. 6.
    McElvain, J., Keshavarz, M., Wang, H., Wudl, F., Heeger, A.J.: Fullerene-based polymer grid triodes. J. Appl. Phys. 81, 6468 (1997)CrossRefGoogle Scholar
  7. 7.
    Wang, P., Liu, B., Shen, Y., Zheng, Y., Mccarthy, M.A., Holloway, P., Rinzler, A.G.: N-channel carbon nanotube enabled vertical field effect transistors with solution deposited ZnO nanoparticle based channel layers. Appl. Phys. Lett. 100, 173514 (2012)CrossRefGoogle Scholar
  8. 8.
    Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G.: Transparent, conductive carbon nanotube films. Science 305, 1273 (2004)CrossRefGoogle Scholar
  9. 9.
    Kumar, A., Zhou, C.: The race to replace tin-doped indium oxide: which material will win? ACS Nano 4, 11 (2010)CrossRefGoogle Scholar
  10. 10.
    Ben-Sasson, A.J., Azulai, D., Gilon, H., Facchetti, A., Markovich, G., Tessler, N.: Self-assembled metallic nanowire-based vertical organic field-effect transistor. ACS Appl. Mater. Interfaces 7, 2149 (2015)CrossRefGoogle Scholar
  11. 11.
    Chen, W., Rinzler, A., Guo, J.: Computational study of graphene-based vertical field effect transistor. J. Appl. Phys. 113, 94507 (2013)CrossRefGoogle Scholar
  12. 12.
    Fiori, G., Bruzzone, S., Iannaccone, G.: Very large current modulation in vertical heterostructure graphene/hBN transistors. IEEE Trans. Electron Devices 60, 268 (2013)CrossRefGoogle Scholar
  13. 13.
    Ma, L., Yang, Y.: Unique architecture and concept for high-performance organic transistors. Appl. Phys. Lett. 85, 5084 (2004)CrossRefGoogle Scholar
  14. 14.
    Zhao, K., Deng, J., Wu, X., Cheng, X., Wei, J., Yin, S.: Fabrication and characteristics of permeable-base organic transistors based on co-evaporated pentacene: Al base. Org. Electron. 12, 1003 (2011)CrossRefGoogle Scholar
  15. 15.
    Huang, J., Yi, M., Ma, D., Hümmelgen, I.A.: Vertical structure p-type permeable metal-base organic transistors based on N,N′-diphentyl-N,N′-bis(1-naphthylphenyl)-1,1′-biphenyl-4,4′-diamine. Appl. Phys. Lett. 92, 232111 (2008)CrossRefGoogle Scholar
  16. 16.
    Kvitschal, A., Cruz-Cruz, I., Hümmelgen, I.A.: Copper phthalocyanine based vertical organicfield effect transistor with naturally patterned tin intermediate grid electrode. Org. Electron. 27, 155 (2015)CrossRefGoogle Scholar
  17. 17.
    Evans, B.L., Xu, S.: The nucleation and growth of thin films. In: SPIE, p. 90 (1990)Google Scholar
  18. 18.
    Venables, J.A., Spiller, G.D.T., Hanbucken, M.: Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984)CrossRefGoogle Scholar
  19. 19.
    Bao, Z., Locklin, J.: Organic Field-Effetc Transistor. CRC Press, Boca Raton (2007)CrossRefGoogle Scholar
  20. 20.
    Li, Y., Matsuura, R., Saka, M.: Controlling surface morphology of Sn thin-film to enhance cycling performance in lithium ion batteries. Mater. Res. Bull. 87, 155 (2017)CrossRefGoogle Scholar
  21. 21.
    Lin, W.Y., Müller, R., Myny, K., Steudel, S., Genoe, J., Heremans, P.: Room-temperature solution-processed high-k gate dielectrics for large area electronics applications. Org. Electron. 12, 955 (2011)CrossRefGoogle Scholar
  22. 22.
    Kleemann, H., Günther, A.A., Leo, K., Lüssem, B.: High-performance vertical organic transistors. Small 9, 3670 (2013)CrossRefGoogle Scholar
  23. 23.
    Ben-Sasson, A.J., Greenman, M., Roichman, Y., Tessler, N.: The mechanism of operation of lateral and vertical organic field effect transistors. Isr. J. Chem. 54, 568 (2014)CrossRefGoogle Scholar
  24. 24.
    Tanase, C., Meijer, E.J., Blom, P.W.M., de Leeuw, D.M.: Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003)CrossRefGoogle Scholar
  25. 25.
    Shin, K., Yang, C., Yang, S.Y., Jeon, H., Park, C.E.: Effects of polymer gate dielectrics roughness on pentacene field-effect transistors. Appl. Phys. Lett. 88, 72109 (2006)CrossRefGoogle Scholar
  26. 26.
    Kumar, S., Dhar, A.: Low operating voltage n-channel organic field effect transistors using lithium fluoride/PMMA bilayer gate dielectric. Mater. Res. Bull. 70, 590 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Technology and Applied SciencesSão Paulo State University (UNESP)Presidente PrudenteBrazil

Personalised recommendations