Electronic Materials Letters

, Volume 14, Issue 2, pp 187–197 | Cite as

Significantly Elevated Dielectric and Energy Storage Traits in Boron Nitride Filled Polymer Nano-composites with Topological Structure

  • Yefeng Feng
  • Jianxiong Zhang
  • Jianbing Hu
  • Shichun Li
  • Cheng Peng
Article

Abstract

Interface induced polarization has a prominent influence on dielectric properties of 0–3 type polymer based composites containing Si-based semi-conductors. The disadvantages of composites were higher dielectric loss, lower breakdown strength and energy storage density, although higher permittivity was achieved. In this work, dielectric, conductive, breakdown and energy storage properties of four nano-composites have been researched. Based on the cooperation of fluoropolymer/alpha-SiC layer and fluoropolymer/hexagonal-BN layer, it was confirmed constructing the heterogeneous layer-by-layer composite structure rather than homogeneous mono-layer structure could significantly reduce dielectric loss, promote breakdown strength and increase energy storage density. The former worked for a larger dielectric response and the latter layer acted as a robust barrier of charge carrier transfer. The best nano-composite could possess a permittivity of 43@100 Hz (~ 3.3 times of polymer), loss of 0.07@100 Hz (~ 37% of polymer), discharged energy density of 2.23 J/cm3@249 kV/cm (~ 10 times of polymer) and discharged energy efficiency of 54%@249 kV/cm (~ 5 times of polymer). This work might enlighten a facile route to achieve the promising high energy storage composite dielectrics by constructing the layer-by-layer topological structure.

Graphical Abstract

Keywords

Boron nitride Dielectric Energy storage Layer-by-layer Nano-composite 

Notes

Acknowledgements

This work was financially supported by the Talent Introduction Scientific Research Initiation Projects of Yangtze Normal University (Grant Nos. 2017KYQD33 and 2017KYQD34).

Supplementary material

13391_2018_32_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2267 kb)

References

  1. 1.
    Liu, H.Y., Shen, Y., Song, Y.: Carbon nanotube array/polymer core/shell structured composites with high dielectric permittivity, low dielectric loss, and large energy density. Adv. Mater. 23, 5104–5108 (2011)CrossRefGoogle Scholar
  2. 2.
    Shao, S.F., Zhang, J.L., Zheng, P.: High permittivity and low dielectric loss in ceramics with the nominal compositions of CaCu3−xLa2x/3 Ti4O12. Appl. Phys. Lett. 91, 042905 (2007)CrossRefGoogle Scholar
  3. 3.
    Subodh, G., Deepu, V., Mohanan, P.: Dielectric response of high permittivity polymer ceramic composite with low loss tangent. Appl. Phys. Lett. 95, 062903 (2009)CrossRefGoogle Scholar
  4. 4.
    Bhadra, D., Biswas, A., Sarkar, S.: Low loss high dielectric permittivity of polyvinylidene fluoride and KxTiyNi1−x−yO (x = 0.05), y = 0.02) composites. J. Appl. Phys. 107, 24115 (2010)CrossRefGoogle Scholar
  5. 5.
    Dimiev, A., Lu, W., Zeller, K.: Low-loss, high-permittivity composites made from graphene nanoribbons. ACS Appl. Mater. Interfaces 3, 4657–4661 (2011)CrossRefGoogle Scholar
  6. 6.
    Wang, D.R., Zhou, T., Zha, J.W.: Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 1, 6162–6168 (2013)CrossRefGoogle Scholar
  7. 7.
    Dang, Z.M., Tian, C.Y., Zha, J.W.: Potential bioelectroactive bone regeneration polymer nanocomposites with high dielectric permittivity. Adv. Eng. Mater. 11, B144–B147 (2009)CrossRefGoogle Scholar
  8. 8.
    Lu, J.X., Wong, C.P.: Recent advances in high-k nanocomposite materials for embedded capacitor applications. IEEE Trans. Dielectr. Electr. Insul. 15, 1322–1328 (2008)CrossRefGoogle Scholar
  9. 9.
    Lin, C.Y., Kuo, D.H., Sie, F.R.: Preparation and characterization of organosoluble polyimide/BaTiO3composite films with mechanical- and chemical-treated ceramic fillers. Polym. J. 44, 1131–1137 (2012)CrossRefGoogle Scholar
  10. 10.
    Wongwilawan, S., Ishida, H., Manuspiya, H.: Dielectric properties at microwave frequency in barium strontium titanate/poly (benzoxazine/urethane) composite films. Ferroelectrics 452, 84–90 (2013)CrossRefGoogle Scholar
  11. 11.
    Panda, M., Srinivas, V., Thakur, A.K.: Role of polymer matrix in large enhancement of dielectric constant in polymer-metal composites. Appl. Phys. Lett. 99, 042905 (2011)CrossRefGoogle Scholar
  12. 12.
    Panda, M., Srinivas, V., Thakur, A.K.: Percolation behavior of polymer/metal composites on modification of filler. Mod. Phys. Lett. B 28, 1450055 (2014)CrossRefGoogle Scholar
  13. 13.
    Pothukuchi, S., Li, Y., Wong, C.P.: Development of a novel polymer–metal nanocomposite obtained through the route of in situ reduction for integral capacitor application. J. Appl. Polym. Sci. 93, 1531–1538 (2004)CrossRefGoogle Scholar
  14. 14.
    Qi, L., Lee, B.I., Chen, S.H.: High-dielectric-constant silver–epoxy composites as embedded dielectrics. Adv. Mater. 17, 1777–1781 (2005)CrossRefGoogle Scholar
  15. 15.
    Dang, Z.M., Shen, Y., Nan, C.W.: Dielectric behavior of three-phase percolative Ni–BaTiO3/polyvinylidene fluoride composites. Appl. Phys. Lett. 81, 4814 (2002)CrossRefGoogle Scholar
  16. 16.
    Chou, Y.H., Chiu, Y.C., Chen, W.C.: High-k polymer–graphene oxide dielectrics for low-voltage flexible nonvolatile transistor memory devices. Chem. Commun. 50, 3217–3219 (2014)CrossRefGoogle Scholar
  17. 17.
    Kim, J.Y., Lee, J., Lee, W.H.: Flexible and transparent dielectric film with a high dielectric constant using chemical vapor deposition-grown graphene interlayer. ACS Nano 8, 269–274 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhang, X.J., Wang, G.S., Wei, Y.Z., Guo, L., Cao, M.S.: Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene–CuS nanocomposites and polyvinylidene fluoride. J. Mater. Chem. A 1, 12115–12122 (2013)CrossRefGoogle Scholar
  19. 19.
    Brosseau, C., Boulic, F., Queffelec, P.: Dielectric and microstructure properties of polymer carbon black composites. J. Appl. Phys. 81, 882 (1997)CrossRefGoogle Scholar
  20. 20.
    Wen, F., Xu, Z., Tan, S.B., Appl, A.C.S.: Chemical bonding-induced low dielectric loss and low conductivity in high-K poly (vinylidenefluoride-trifluorethylene)/graphene nanosheets nanocomposites. Mater. Interfaces 5, 9411–9420 (2013)CrossRefGoogle Scholar
  21. 21.
    Wang, C.C., Song, J.F., Bao, H.M.: Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv. Funct. Mater. 18, 1299–1306 (2008)CrossRefGoogle Scholar
  22. 22.
    Cristovan, F.H., Pereira, E.C.: Polymeric varistor based on PANI/ABS composite. Synth. Met. 161, 2041–2044 (2011)CrossRefGoogle Scholar
  23. 23.
    Bhadra, J., Sarkar, D.: Field effect transistor fabricated from polyaniline-polyvinyl alcohol nanocomposite. Indian J. Phys. 84, 693–697 (2010)CrossRefGoogle Scholar
  24. 24.
    Zhang, Q.M., Li, H.F., Poh, M.: An all-organic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002)CrossRefGoogle Scholar
  25. 25.
    Wang, J.W., Shen, Q.D., Yang, C.Z.: High dielectric constant composite of P (VDF−TrFE) with grafted copper phthalocyanine oligomer. Macromolecules 37, 2294–2298 (2004)CrossRefGoogle Scholar
  26. 26.
    Mallet, P., Guerin, C.A., Sentenac, A.: Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy. Phys. Rev. B 72, 014205 (2005)CrossRefGoogle Scholar
  27. 27.
    Skryabin, I.L., Radchik, A.V., Moses, P.: The consistent application of Maxwell–Garnett effective medium theory to anisotropic composites. Appl. Phys. Lett. 70, 2221 (1997)CrossRefGoogle Scholar
  28. 28.
    Goncharenko, A.V.: Generalizations of the Bruggeman equation and a concept of shape-distributed particle composites. Phys. Rev. E 68, 041108 (2003)CrossRefGoogle Scholar
  29. 29.
    Puranik, S.M., Kumbharkhane, A.C., Mehrotra, S.C.: The static permittivity of binary mixtures using an improved bruggeman model. J. Mol. Liq. 59, 173–177 (1994)CrossRefGoogle Scholar
  30. 30.
    Rahaman, M., Chaki, T.K., Khastgir, D.: Consideration of interface polarization in the modeling of dielectric property for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through in-situ polymerization of aniline in EVA matrix. Eur. Polym. J. 48, 1241–1248 (2012)CrossRefGoogle Scholar
  31. 31.
    Dang, Z.M., Yuan, J.K., Zha, J.W.: Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater Sci. 57, 660–723 (2012)CrossRefGoogle Scholar
  32. 32.
    Deepa, K.S., Gopika, M.S., James, J.: Influence of matrix conductivity and Coulomb blockade effect on the percolation threshold of insulator–conductor composites. Compos. Sci. Technol. 78, 18–23 (2013)CrossRefGoogle Scholar
  33. 33.
    Lu, J.X., Moon, K.S., Xu, J.W.: Synthesis and dielectric properties of novel high-Kpolymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J. Mater. Chem. 16, 1543–1548 (2006)CrossRefGoogle Scholar
  34. 34.
    Yang, W.H., Yu, S.H., Sun, R.: Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites. Acta Mater. 59, 5593–5602 (2011)CrossRefGoogle Scholar
  35. 35.
    Li, Q., Han, K., Gadinski, M.R.: High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26, 6244–6249 (2014)CrossRefGoogle Scholar
  36. 36.
    Yu, K., Niu, Y., Zhou, Y.: Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. J. Am. Ceram. Soc. 96, 2519–2524 (2013)CrossRefGoogle Scholar
  37. 37.
    Liu, S., Xue, S., Zhang, W.: Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly(vinylidene fluoride) nanocomposites. Ceram. Int. 40, 15633–15640 (2014)CrossRefGoogle Scholar
  38. 38.
    Liu, H., Luo, S., Yu, S.: Flexible BaTiO3nf-Ag/PVDF nanocomposite films with high dielectric constant and energy density. IEEE Trans. Dielectr. Electr. Insul. 24, 757–763 (2017)CrossRefGoogle Scholar
  39. 39.
    Shen, Y., Shen, D., Zhang, X.: High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structure. J. Mater. Chem. A 4, 8359–8365 (2016)CrossRefGoogle Scholar
  40. 40.
    Liu, S., Zhai, J., Wang, J.: Enhanced energy storage density in poly (vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl. Mater. Interfaces 6, 1533–1540 (2014)CrossRefGoogle Scholar
  41. 41.
    Hu, P., Shen, Y., Guan, Y.: Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv. Funct. Mater. 24, 3172–3178 (2014)CrossRefGoogle Scholar
  42. 42.
    Song, Y., Shen, Y., Hu, P.: Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers. Appl. Phys. Lett. 101, 152904 (2012)CrossRefGoogle Scholar
  43. 43.
    Zhang, Z., Gu, Y., Bi, J.: Tunable BT@SiO2 core@shell filler reinforced polymer composite with high breakdown strength and release energy density. Compos. A Appl. S 85, 172–180 (2016)CrossRefGoogle Scholar
  44. 44.
    Chen, Q., Shen, Y., Zhang, S.: Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45, 433–458 (2015)CrossRefGoogle Scholar
  45. 45.
    Feng, Y.F., Miao, B., Gong, H.H.: High dielectric and mechanical properties achieved in cross-linked PVDF/α-SiC nanocomposites with elevated compatibility and induced polarization at the interface. ACS Appl. Mater. Interfaces 8, 19054–19065 (2016)CrossRefGoogle Scholar
  46. 46.
    Patra, S.K., Prusty, G., Swain, S.K.: Ultrasound assisted synthesis of PMMA/clay nanocomposites: study of oxygen permeation and flame retardant properties. B Mater Sci. 35, 27–32 (2012)CrossRefGoogle Scholar
  47. 47.
    Cho, H.B., Nakayama, T., Jeong, D.Y.: Polyvilylidenefluoride-based nanocomposite films induced-by exfoliated boron nitride nanosheets with controlled orientation. Compos. Res. 28, 270–276 (2015)CrossRefGoogle Scholar
  48. 48.
    Sharma, S., Kumar, P.M., Moholkar, V.S.: Enhancement of thermal and mechanical properties of poly (MMA-co-BA)/Cloisite 30B nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Ultrason. Sonochem. 36, 212–225 (2017)CrossRefGoogle Scholar
  49. 49.
    Shikinaka, K., Aizawa, K., Fujii, N.: Flexible, transparent nanocomposite film with a large clay component and ordered structure obtained by a simple solution-casting method. Langmuir 26, 12493–12495 (2010)CrossRefGoogle Scholar
  50. 50.
    Bich, E., Hensen, U., Michalik, M.: 1H NMR spectroscopic and thermodynamic studies of hydrogen bonding in liquid n-butanol + cyclohexane, tert-butanol + cyclohexane, and n-butanol + pyridine mixtures. Phys. Chem. Chem. Phys. 4, 5827–5832 (2002)CrossRefGoogle Scholar
  51. 51.
    Kennedy, G.P., Lim, K.Y., Kim, Y.W.: Effect of SiC particle size on flexural strength of porous self-bonded SiC ceramics. Metals Mater. Int. 17, 599–605 (2011)CrossRefGoogle Scholar
  52. 52.
    Montalba, C., Ramam, K., Eskin, D.G.: Fabrication of a novel hybrid AlMg5/SiC/PLZT metal matrix composite produced by hot extrusion. Mater. Des. 69, 213–218 (2015)CrossRefGoogle Scholar
  53. 53.
    Feng, Y.F., Gong, H.H., Xie, Y.C.: Strong induced polarity between Poly (vinylidene fluoride-co-chlorotrifluoroethylene) and α-SiC and its influence on dielectric permittivity and loss of their composites. J. Appl. Phys. 117, 094104 (2015)CrossRefGoogle Scholar
  54. 54.
    Li, Q., Chen, L., Gadinski, M.R.: Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015)CrossRefGoogle Scholar
  55. 55.
    Sun, Z.X., Ma, C.R., Liu, M.: Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv. Mater. 29, 1604427 (2017)CrossRefGoogle Scholar
  56. 56.
    Liu, F., Li, Q., Cui, J.: High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 27, 1606292 (2017)CrossRefGoogle Scholar
  57. 57.
    Qian, X.F., Wang, Y.Y., Li, W.B.: Modelling of stacked 2D materials and devices. 2D Mater. 2, 032003 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Yefeng Feng
    • 1
  • Jianxiong Zhang
    • 1
  • Jianbing Hu
    • 1
  • Shichun Li
    • 2
  • Cheng Peng
    • 1
  1. 1.School of Mechanical and Electrical EngineeringYangtze Normal UniversityChongqingPeople’s Republic of China
  2. 2.Teaching Affairs DepartmentYangtze Normal UniversityChongqingPeople’s Republic of China

Personalised recommendations