The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System
- 34 Downloads
Abstract
We have investigated the low temperature (LT) growth of GeSn–Ge–Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240–360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.
Graphical Abstract
Keywords
RTCVD GeSn Ge2H6 SnCl4 HRXRD RSMNotes
Acknowledgements
This work was supported by the Future Semiconductor Device Technology Development Program (Grant No. 10044651) funded By MOTIE (Ministry of Trade, Industry and Energy) and KSRC (Korea Semiconductor Research Consortium). It was also supported by the National Research Foundation of Korea (NRF) grant (NRF-2017R1A2B2003365) funded by the Ministry of Education, Republic of Korea. XRD samples were analyzed by Multi-Function X-ray Diffractometer (EMPYREAN, PANalytical) installed in the Center for Daegu Korea Basic Science Institute (KBSI).
References
- 1.Khurelbaatar, Z., Kil, Y.-H., Kim, T.S., Shim, K.-H., Hong, H., Choi, C.-J.: Optoelectronic characterization of infrared photodetector fabricated on Ge-on-Si substrate. J. Nanosci. Nanotechnol. 15, 1 (2015)CrossRefGoogle Scholar
- 2.Moontragoon, P., Ikonić, Z., Harrison, P.: Band structure calculation of Si–Ge–Sn alloys: Achieving direct band gap materials. Semicond. Sci. Technol. 22, 742 (2007)CrossRefGoogle Scholar
- 3.Thurmond, C.D., Trumbore, F.A., Kowalchik, M.: Germanium solidus curves. J. Chem. Phys. 25, 799 (1956)CrossRefGoogle Scholar
- 4.Lieten, R.R., Seo, J.W., Decoster, S., Vantomme, A., Peters, S., Bustillo, K.C., Haller, E.E., Menghini, M., Locquet, J.-P.: Tensile strained GeSn on Si by solid phase epitaxy. Appl. Phy. Lett. 102, 052106 (2013)CrossRefGoogle Scholar
- 5.Sadoh, T., Ooato, A., Park, J.-H., Miyao, M.: High Sn-concentration (~ 8%) GeSn by low-temperature (~ 150 °C) solid-phase epitaxy of a-GeSn/c-Ge. Thin Solid Films 602, 20 (2016)CrossRefGoogle Scholar
- 6.Werner, J., Oehme, M., Schmid, M., Kaschel, M., Schirmer, A., Kasper, E., Schulze, J.: Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy. Appl. Phy. Lett. 98, 061108 (2011)CrossRefGoogle Scholar
- 7.Gupta, J.P., Bhargava, N., Kim, S., Adam, T., Kolodzey, J.: Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy. Appl. Phy. Lett. 102, 251117 (2013)CrossRefGoogle Scholar
- 8.Bhargava, N., Coppinger, M., Gupta, J.P., Wielunski, L., Kolodzey, J.: Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy. Appl. Phy. Lett. 103, 041908 (2013)CrossRefGoogle Scholar
- 9.Talochkin, A.B., Mashanov, V.I.: Formation of GeSn alloy on Si(100) by low-temperature molecular beam epitaxy. Appl. Phy. Lett. 105, 263101 (2014)CrossRefGoogle Scholar
- 10.Wang, W., Zhou, Q., Dong, Y., Tok, E.S., Yeo, Y.-C.: Critical thickness for strain relaxation of Ge1-xSnx (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001). Appl. Phy. Lett. 106, 232106 (2015)CrossRefGoogle Scholar
- 11.Wirths, S., Buca, D., Tiedemann, A.T., Holländer, B., Bernardy, P., Stoica, T., Grützmacher, D., Mantl, S.: Epitaxial growth of Ge1-xSnx by reduced pressure CVD using SnCl4 and Ge2H6. ECS Trans. 50, 885 (2012)CrossRefGoogle Scholar
- 12.Gencarelli, F., Vincent, B., Demeulemeester, J., Vantomme, A., Moussa, A., Franquet, A., Kumar, A., Bender, H., Meersschaut, J., Vandervorst, W., Loo, R., Caymax, M., Temst, K., Heynsa, M.: Crystalline properties and strain relaxation mechanism of CVD grown GeSn. ECS J. Solid State Sci. and Technol. 2, 134 (2013)CrossRefGoogle Scholar
- 13.Wirths, S., Buca, D., Mussler, G., Tiedemann, A.T., Hollander, B., Bernardy, P., Stoica, T., Grutzmacher, D., Mantl, S.: Reduced pressure CVD growth of Ge and Ge1-xSnx alloys. ECS J. Solid State Sci. Technol. 2, N99 (2013)CrossRefGoogle Scholar
- 14.Mosleh, A., Ghetmiri, S.A., Conley, B.R., Hawkridge, M., Benamara, M., Nazzal, A., Tolle, J., Yu, S.-Q., Naseem, H.A.: Material Characterization of Ge1-xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications”. Journal of Electronic Materials 43, 938 (2014)CrossRefGoogle Scholar
- 15.Wang, L., Wang, W., Zhou, Q., Pan, J., Zhang, Z., Tok, E.S., Yeo, Y.-C.: Post-growth annealing of germanium-tin alloys using pulsed excimer laser. J. Appl. Phys. 118, 025701 (2015)CrossRefGoogle Scholar
- 16.Zhang, X., Zhang, D., Cheng, B., Liu, Z., Zhang, G., Xue, C., Wang, Q.: Crystal quality improvement of GeSn alloys by thermal annealing. ECS Solid State Lett. 3, P127 (2014)CrossRefGoogle Scholar
- 17.Li, H., Chang, C., Chen, T.P., Cheng, H.H., Shi, Z.W., Chen, H.: Characteristics of Sn segregation in Ge/GeSn heterostructures. Appl. Phys. Lett. 105, 151906 (2014)CrossRefGoogle Scholar
- 18.Takeuchi, S., Shimura, Y., Nakatsuka, O., Zaima, S., Ogawa, M., Sakai, A.: Growth of highly strain-relaxed Ge1-xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method. Appl. Phys. Lett. 92, 231916 (2008)CrossRefGoogle Scholar
- 19.Kil, Y.-H., Yuk, S.-H., Kim, J.H., Kim, T.S., Kim, Y.T., Choi, C.-J., Shim, K.-H.: The low temperature epitaxy of Ge on Si (100) substrate using two different precursors of GeH4 and Ge2H6. Solid State Electron. 124, 35 (2016)CrossRefGoogle Scholar
- 20.Beeler, R., Roucka, R., Chizmeshya, A.V.G., Kouvetakis, J., Menendez, J.: Nonlinear structure-composition relationships in the Ge1-ySny/Si(100) (y < 0.15) system. Phys. Rev. B 82, 035204 (2011)CrossRefGoogle Scholar