Electronic Materials Letters

, Volume 14, Issue 2, pp 125–132 | Cite as

High Transparent and Conductive TiO2/Ag/TiO2 Multilayer Electrode Films Deposited on Sapphire Substrate

  • Chadrasekhar Loka
  • Sung Whan Moon
  • YiSik Choi
  • Kee-Sun Lee
Article

Abstract

Transparent conducting oxides attract intense interests due to its diverse industrial applications. In this study, we report sapphire substrate-based TiO2/Ag/TiO2 (TAT) multilayer structure of indium-free transparent conductive multilayer coatings. The TAT thin films were deposited at room temperature on sapphire substrates and a rigorous analysis has been presented on the electrical and optical properties of the films as a function of Ag thickness. The optical and electrical properties were mainly controlled by the Ag mid-layer thickness of the TAT tri-layer. The TAT films showed high luminous transmittance ~ 84% at 550 nm along with noteworthy low electrical resistance ~ 3.65 × 10−5 Ω-cm and sheet resistance of 3.77 Ω/square, which is better are than those of amorphous ITO films and any sapphire-based dielectric/metal/dielectric multilayer stack. The carrier concentration of the films was increased with respect to Ag thickness. We obtained highest Hackke’s figure of merit 43.97 × 10−3 Ω−1 from the TAT multilayer thin film with a 16 nm thick Ag mid-layer.

Graphical Abstract

Keywords

Titanium dioxide Dielectric/metal/dielectric Silver Transparent conductive oxide Sputtering Thin films 

Notes

Acknowledgements

The research was supported by the International Science and Business Belt Program through the Ministry of Science, ICT and Future Planning (2017K000488). This work was supported by the Technology Innovation Program, 10048568, Development of Manufacturing Technology of 1500 N Grade Sapphire for Optic and Display Component Applications funded by the Ministry of Trade, Industry and Energy.

References

  1. 1.
    Wager, J.F.: Transparent electronics. Science 300, 1245 (2003)CrossRefGoogle Scholar
  2. 2.
    Guillén, C., Herrero, J.: TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Films 520, 1 (2011)CrossRefGoogle Scholar
  3. 3.
    Klein, A.: Transparent conducting oxides: electronic structure–property relationship from photoelectron spectroscopy with in situ sample preparation. J. Am. Ceram. Soc. 96, 331 (2013)Google Scholar
  4. 4.
    Fortunato, E., Ginley, D., Hosono, H., Paine, D.C.: Transparent conducting oxides for photovoltaics. Mater. Res. Bull. 32, 242 (2007)CrossRefGoogle Scholar
  5. 5.
    Angmo, D., Krebs, F.C.J.: Flexible ITO-free polymer solar cells. J. Appl. Polym. Sci. 129, 1 (2013)CrossRefGoogle Scholar
  6. 6.
    Emmott, C.J.M., Urbina, A., Nelson, J.: Environmental and economic assessment of ITO-free electrodes for organic solar cells. Sol. Energy Mater. Sol. Cells 97, 14 (2012)CrossRefGoogle Scholar
  7. 7.
    Zilberberg, K., Gasse, F., Pagui, R., Polywka, A., Behrendt, A., Trost, S., Heiderhoff, R., Gorrn, P., Riedl, T.: Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides. Adv. Funct. Mater. 24, 1671 (2014)CrossRefGoogle Scholar
  8. 8.
    Khuili, M., Fazouan, N., Makarim, H.A.E., Halani, G.E., Atmani, E.H.: Comparative first principles study of ZnO doped with group III elements. J. Alloys Compd. 688, 368 (2016)CrossRefGoogle Scholar
  9. 9.
    Bhosle, V., Tiwari, A., Narayan, J.: Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Appl. Phys. Lett. 88, 032106 (2006)CrossRefGoogle Scholar
  10. 10.
    Mahmood, K., Park, S.B.: Atmospheric pressure based electrostatic spray deposition of transparent conductive ZnO and Al-doped ZnO (AZO) thin films: effects of Al doping and annealing treatment. Electron. Mater. Lett. 9, 161 (2013)CrossRefGoogle Scholar
  11. 11.
    Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35 (2005)CrossRefGoogle Scholar
  12. 12.
    Ginley, D.S., Hosono, H., Paine, D.C.: Handbook of Transparent Conductors. Springer, New York (2010)Google Scholar
  13. 13.
    Sergeant, N.P., Hadipour, A., Niesen, B., Cheyns, D., Heremans, P., Peumans, P., Rand, B.P.: Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Adv. Mater. 24, 728 (2012)CrossRefGoogle Scholar
  14. 14.
    Sahu, D.R., Huang, J.L.: Dependence of film thickness on the electrical and optical properties of ZnO–Cu–ZnO multilayers. Appl. Surf. Sci. 253, 915 (2006)CrossRefGoogle Scholar
  15. 15.
    Lin, B., Lan, C., Li, C., Chen, Z.: Effect of thermal annealing on the performance of WO3–Ag–WO3 transparent conductive film. Thin Solid Films 571, 134 (2014)CrossRefGoogle Scholar
  16. 16.
    Loka, C., Lee, K.S.: Preparation of TiO2/Ag/TiO2 (TAT) multilayer films with optical and electrical properties enhanced by using Cr-added Ag film. Appl. Surf. Sci. 415, 35 (2017)CrossRefGoogle Scholar
  17. 17.
    Lee, C.H., Pandey, R., Wang, B.Y., Choi, W.K., Choi, D.K., Oh, Y.J.: Nano-sized indium-free MTO/Ag/MTO transparent conducting electrode prepared by RF sputtering at room temperature for organic photovoltaic cells. Sol. Energy Mater. Sol. Cells 132, 80 (2015)CrossRefGoogle Scholar
  18. 18.
    Yu, S., Li, L., Lyu, X., Zhang, W.: Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Sci. Rep. 6, 20399 (2016)CrossRefGoogle Scholar
  19. 19.
    Oh, I.S., Ji, C.H., Oh, S.Y.: Effects of ytterbium on electrical and optical properties of BCP/Ag/WO3 transparent electrode based organic photovoltaic cells. Electron. Mater. Lett. 12, 156 (2016)CrossRefGoogle Scholar
  20. 20.
    Dhar, A., Alford, T.L.: Optimization of TiO2/Cu/TiO2 multilayer as transparent composite electrode (TCE) deposited on flexible substrate at room temperature. ECS Solid State Lett. 3, N33 (2014)CrossRefGoogle Scholar
  21. 21.
    Vyas, S., Tiwary, R., Shubham, K., Chakrabarti, P.: Study the target effect on the structural, surface and optical properties of TiO2 thin film fabricated by RF sputtering method. Superlattices Microstruct. 80, 215 (2015)CrossRefGoogle Scholar
  22. 22.
    Campbell, C.T.: Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surf. Sci. Rep. 27, 1 (1997)CrossRefGoogle Scholar
  23. 23.
    Formica, N., Ghosh, D.S., Carrilero, A., Chen, T.L., Simpson, R.E., Pruneri, V.: Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. ACS Appl. Mater. Interfaces. 5, 3048 (2013)CrossRefGoogle Scholar
  24. 24.
    Ryou, J.H.: Gallium Nitride (GaN) on Sapphire Substrates for Visible LEDs Nitride Semiconductor Light-Emitting Diodes (LEDs) Materials, Technologies and Applications. ISBN: 978-0-85709-507-7, 66 (2014)Google Scholar
  25. 25.
    Prest, C.D., Memering, D.N., Rothkopf, F., Hill, M.D., Lynch, S.B., Tan, T.Y.: US Patent 0023430A1 (2014)Google Scholar
  26. 26.
    Mukherjee, S.: Applied Mineralogy: Applications in Industry and Environment, p. 37. Springer, Berlin (2012). ISBN 978-94-007-1162-4Google Scholar
  27. 27.
    MacLeod, A., Clark, C.: Optical Coating Design with the Essential Macleod. The Essential MacLeod Version 9. 6. 415, pp. 85716–95227. Thin Film Center Inc., 2745 E Via Rotonda, Tucson (2012)Google Scholar
  28. 28.
    Miao, D., Jiang, S., Shang, S., Chen, Z.: Infrared reflective properties of AZO/Ag/AZO trilayers prepared by RF magnetron sputtering. Ceram. Int. 40, 12847 (2014)CrossRefGoogle Scholar
  29. 29.
    Indluru, A., Alford, T.L.: Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers. J. Appl. Phys. 105, 123528 (2009)CrossRefGoogle Scholar
  30. 30.
    Yin, Y., Lan, C., Guo, H., Li, C.: Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices. ACS Appl. Mater. Interfaces. 8, 3861 (2016)CrossRefGoogle Scholar
  31. 31.
    Jeong, J.A., Kim, H.K., Koo, H.W., Kim, T.W.: Transmission electron microscopy study of degradation in transparent indium tin oxide/Ag/indium tin oxide multilayer films. Appl. Phys. Lett. 103, 011902 (2013)CrossRefGoogle Scholar
  32. 32.
    Gentle, A.R., Yambem, S.D., Smith, G.B., Burn, P.L., Meredith, P.: Optimized multilayer indium-free electrodes for organic photovoltaics. Phys. Status Solidi A 212, 348 (2015)CrossRefGoogle Scholar
  33. 33.
    Park, S.H., Lee, S.J., Lee, J.H., Kal, J., Hahn, J., Kim, H.K.: Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules. Org. Electron. 30, 112 (2016)CrossRefGoogle Scholar
  34. 34.
    Kim, S.J., Lee, J.L.: Design of dielectric/metal/dielectric transparent electrodes for flexible electronics. J. Photon. Energy 2, 021215 (2012)CrossRefGoogle Scholar
  35. 35.
    Pandey, R., Angadi, B., Kim, S.K., Choi, J.W., Hwang, D.K., Choi, W.K.: Fabrication and surface plasmon coupling studies on the dielectric/Ag structure for transparent conducting electrode applications. Opt. Mater. Express 4, 2078 (2014)CrossRefGoogle Scholar
  36. 36.
    Raether, H.: Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin (1988)Google Scholar
  37. 37.
    Li, D.D., Zhang, D.H., Yan, C.C., Li, T., Wang, Y., Xu, Z.G., Wang, J., Qin, F.: Unidirectional surface plasmon-polariton excitation by a compact slot partially filled with dielectric. Opt. Express 21, 5949 (2013)CrossRefGoogle Scholar
  38. 38.
    Gong, J.B., Dai, R.C., Wang, Z.P., Zhang, Z.M.: Thickness dispersion of surface plasmon of Ag nano-thin films: determination by ellipsometry iterated with transmittance method. Sci. Rep. 5, 9279 (2015)CrossRefGoogle Scholar
  39. 39.
    Yu, S.H., Jia, C.H., Zheng, H.W., Ding, L.H., Zhang, W.F.: High quality transparent conductive SnO2/Ag/SnO2 tri-layer films deposited at room temperature by magnetron sputtering. Mater. Lett. 85, 68 (2012)CrossRefGoogle Scholar
  40. 40.
    Haacke, G.: New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Chadrasekhar Loka
    • 1
  • Sung Whan Moon
    • 2
  • YiSik Choi
    • 2
  • Kee-Sun Lee
    • 1
  1. 1.Department of Advanced Materials Engineering and Smart Natural Space Research CenterKongju National UniversityCheonanKorea
  2. 2.Sapphire Technology Co.Hwaseong CityKorea

Personalised recommendations